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Motivation
Improving Cross-Encoder Models

Transformer-based encoder models (e.g. BERT) are trained for general NLU.
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Can we “fine-tune” the architecture to gain efficiency / effectiveness for re-ranking?
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❑ Efficiency: Is full attention between all tokens necessary?
➜ Sparse Cross-Encoder

❑ Effectiveness: Can we enable document interactions in re-ranking?
➜ Set-Encoder
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Standard Cross-Encoder
Attention Mechanism

Query: python course

Document: Python is a great language to learn.
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10 © Ferdinand Schlatt, Webis 2024



Standard Cross-Encoder
Attention Mechanism

[CLS] python course [SEP] Python is a great language to learn . [SEP]
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Sparse Cross-Encoder
Making Cross-Encoders More Efficient

One paradigm that improves cross-encoder efficiency is reducing the number of
tokens that interact with each other. [Sekulic et al., TREC’20; Jiang et al., EMNLP’20]
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❑ Document tokens’ attention restricted to

context window of length w

➜ Semantic “gist” suffices to determine
the relevance of a document token

❑ Previous work used w = 64 to save
memory and re-rank longer documents

Hypothesis: Very small window sizes are
as effective as full attention.
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Sparse Cross-Encoder
Attention Mechanism

Our sparse cross-encoder architecture combines windowed self-attention and
asymmetric cross-attention between sub-sequences.
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Sparse Cross-Encoder
Effectiveness

nDCG@10 on TREC Deep Learning 2019–2022 passage and document

Task Full Attention / Longformer Sparse Cross-Encoder
w = ∞ 64 16 4 1 0 ∞ 64 16 4 1 0

Passage 0.62 0.62† 0.62† 0.62† 0.61 0.57 0.62† 0.62† 0.61 0.61† 0.60 0.56
Document 0.58 0.58 0.59† 0.59 0.58† 0.56 0.57 0.59 0.59 0.58 0.59 0.56
† denotes significant equivalence within ±0.02 (paired TOST) with underlined score per row. MaxP results are grayed out.

1. Asymmetric query attention does not impact effectiveness . . .

2. Window size of w = 16 is on par with full attention

3. Window size of w = 1 still competitive

4. Window size of w = 0 slightly less effective

➜ Also translates to out-of-domain effectiveness on TIREx [Fröbe et al. SIGIR’23]
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Sparse Cross-Encoder
Efficiency

Latency and memory consumption on synthetic query document pairs

Unit Full Attention Longformer Sparse CE Sparse CE
w = ∞ 64 64 4
Query length 10, Passage length 164
µs 368 980 (+166%) 527 (+43%) 364 (−1%)

MB 9 15 (+67%) 9 (+0%) 7 (−22%)

Query length 10, Document length 4086
ms 49 (+250%) 14 12 (−14%) 8 (−43%)

MB 1608 (+905%) 160 111 (−31%) 66 (−59%)

1. Sparse cross-encoder with w = 64 is more efficient than the Longformer

2. Window size w = 4 is more efficient than full attention on passages
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Sparse Cross-Encoder
Conclusion

We introduced a sparse cross-encoder architecture that combines windowed
self-attention and asymmetric cross-attention between sub-sequences.

❑ Attention from query tokens to other tokens can be deactivated
without losing effectiveness.

❑ Very small window sizes are still effective for re-ranking with cross-encoders.

❑ Our sparse cross-encoder reduces memory consumption and runtime.

Code, models, and paper @ https://github.com/webis-de/ECIR-24
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Making Cross-Encoders More Effective

Query: python course
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Pythons live in the rainforest.
Guido van Rossum invented Python.
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Issue: The model scores each document independently.

➜ Listwise (and pairwise) models enable interactions between documents.
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RankGPT (Listwise) [Sun et al., EMNLP’23]
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Issue: Relevance preference order is not consistent.

44 © Ferdinand Schlatt, Webis 2024



Set-Encoder
Making Cross-Encoders More Effective

Query: python course

Documents: Python is a great language to learn.
Pythons live in the rainforest.
Guido van Rossum invented Python.

RankGPT (Listwise) [Sun et al., EMNLP’23]

Prompt: . . . Query: . . . [1]: . . . [2]: . . . [3]: . . .

Prompt: . . . Query: . . . [1]: . . . [3]: . . . [2]: . . .

Prompt: . . . Query: . . . [2]: . . . [1]: . . . [3]: . . .

Prompt: . . . Query: . . . [2]: . . . [3]: . . . [1]: . . .

..
.

➜ GPT ➜ 1 > 3 > 2

1 > 3 > 2

1 > 3 > 2

3 > 1 > 2

..
.

Issue: Relevance preference order is not consistent.

45 © Ferdinand Schlatt, Webis 2024



Set-Encoder
Making Cross-Encoders More Effective

Query: python course

Documents: Python is a great language to learn.
Pythons live in the rainforest.
Guido van Rossum invented Python.

RankGPT (Listwise) [Sun et al., EMNLP’23]

Prompt: . . . Query: . . . [1]: . . . [2]: . . . [3]: . . .

Prompt: . . . Query: . . . [1]: . . . [3]: . . . [2]: . . .

Prompt: . . . Query: . . . [2]: . . . [1]: . . . [3]: . . .

Prompt: . . . Query: . . . [2]: . . . [3]: . . . [1]: . . .

..
.

➜ GPT ➜ 1 > 3 > 2

1 > 3 > 2

1 > 3 > 2

3 > 1 > 2

..
.

Issue: Relevance preference order is not consistent.

➜ No current transformer-based re-rankers are listwise and permutation invariant
because input documents are processed independently or concatenated.
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48 © Ferdinand Schlatt, Webis 2024



Set-Encoder
Attention Mechanism

[CLS] python course [SEP] Python is a great language to learn . [SEP]

[CLS] python course [SEP] Pythons live in the rainforest . [SEP]

[CLS] python course [SEP] Guido van Rossum invented Python . [SEP]

Set-Encoder

A
tte

nt
io

n
fro

m

Attention to
1. Insert an extra [INT] token

2. Allow a document to attend to all
other documents’ [INT] tokens
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Set-Encoder

A
tte

nt
io

n
fro

m

Attention to
1. Insert an extra [INT] token

2. Allow a document to attend to all
other documents’ [INT] tokens

❑ [INT] tokens aggregate semantic
information and shares
information with other documents

❑ Permutation-invariant because all
[INT] tokens share the same
positional encoding

51 © Ferdinand Schlatt, Webis 2024



Set-Encoder
Attention Mechanism

[CLS] [INT] python course [SEP] Python is a great language to learn . [SEP]

[CLS] [INT] python course [SEP] Pythons live in the rainforest . [SEP]

[CLS] [INT] python course [SEP] Guido van Rossum invented Python . [SEP]
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Set-Encoder
Distilling Cross-Encoders from LLMs

Cross-encoders are typically fine-tuned on MS MARCO.
[Nguyen et al., COCO@NeurIPS’16]

Zero-shot LLMs are more effective than cross-encoders fine-tuned on MS MARCO.
[Sun et al., EMNLP’23, Pradeep et al., arXiv’23]

Cross-encoders distilled from LLMs sit in between.
[Sun et al., EMNLP’23, Baldelli et al., ECIR’24]

Cross-Encoder
MS MARCO < < < RankGPT

Rank-DistiLLM
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Data and paper @ https://github.com/webis-de/msmarco-llm-distillation
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Set-Encoder
Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model TREC DL 19 TREC DL 20 TIREx
First Stage BM25 CBv2 BM25 CBv2

First Stage 0.480 0.732 0.494 0.724 0.394
RankGPT-4o 0.725 0.784 0.719 0.793 –
RankGPT-4o Full 0.732 0.781 0.711 0.799 –
RankZephyr 0.719 0.749 0.720 0.798 0.478
monoELECTRABASE 0.720 0.768 0.711 0.770 0.457
monoELECTRALARGE 0.733 0.765 0.727 0.799 0.475
Set-EncoderBASE 0.724 0.788 0.710 0.777 0.459
Set-EncoderLARGE Still training :(

Bold / underlined scores are the highest / second highest per task. TIREx scores are reported as geometric mean.

1. Set-Encoder is competitive with state-of-the-art zero-shot LLM re-rankers.

2. But so is a plain pointwise monoELECTRA.

3. A large monoELECTRA is on par with LLMs even in out-of-domain re-ranking.
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Set-Encoder
Listwise Re-Ranking

Three hypotheses why the Set-Encoder does not improve over monoELECTRA:

1. The Set-Encoder cannot model interactions between documents.

2. The training data does not provide signals that listwise models profit from.

3. Assessing topical relevance does not require document interactions.
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➜ We build a synthetic task which requires document interactions.

MS MARCO contains many lexical near-duplicates.

Python is a great language to learn.

Python is a great language to learn now.

Pythons live in the rainforest.

Guido van Rossum invented Python.

Fine-tune models to rank according to relevance and put duplicates at the end.
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Set-Encoder
Listwise Re-Ranking

Three hypotheses why the Set-Encoder does not improve over monoELECTRA:

1. The Set-Encoder cannot model interactions between documents.

2. The training data does not provide signals that listwise models profit from.

3. Assessing topical relevance does not require document interactions.

➜ We build a synthetic task which requires document interactions.

α-nDCG@10 (α = 0.99) on the synthetic task

Model TREC DL 19 TREC DL 20
monoELECTRA 0.794 0.765
Set-Encoder 0.830† 0.803†
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Set-Encoder
Permutation Invariance

Re-ordering input documents affects previous listwise model’s ranking preferences.
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2. Original BM25 ranking
4. Inverse ideal ranking
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❑ Previous listwise re-rankers are biased by the order of the input documents.
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A substantial number of previous works attempt to mitigate these positional biases.
[Zhuang et al., SIGIR’24; Parry et al., arXiv’24]

➜ Making the model permutation-invariant is a more principled approach.
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Set-Encoder
Conclusion

We introduced the Set-Encoder architecture that enables inter-document
interactions in a permutation-invariant way.

❑ Permutation invariance is crucial for robustness and efficiency.

❑ Inter-document interactions do not lead to more effective models
when assessing topical relevance.

❑ For more complex tasks requiring inter-document interactions, the
Set-Encoder is a promising architecture.

Code and paper @ https://github.com/webis-de/set-encoder
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Improving Cross-Encoders
Conclusion

Bottom line:

1. Decoder-only is cool, but do not forget our friend, the encoder-only model.
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2. “Architecture-fine-tuning” combined with parameter fine-tuning can
significantly improve effectiveness and efficiency.

3. Our current evaluation setups are insufficient to determine if listwise models
are better than pointwise ones.
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Improving Cross-Encoders
Conclusion

Bottom line:

1. Decoder-only is cool, but do not forget our friend, the encoder-only model.

2. “Architecture-fine-tuning” combined with parameter fine-tuning can
significantly improve effectiveness and efficiency.

3. Our current evaluation setups are insufficient to determine if listwise models
are better than pointwise ones.

Thank you!

Sparse Cross-Encoder Rank-DistiLLM Set-Encoder
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Sparse Cross-Encoder
Full TREC DL Table

Task Full Att. / Longformer Sparse Cross-Encoder QDS
w = ∞ 64 16 4 1 0 ∞ 64 16 4 1 0 64

P
as

sa
ge

2019 .724 .719† .725† .719 .714 .694 .722 .717 .724 .728 .715 .696 .720†

2020 .674 .681† .680 .684 .676 .632 .666 .672 .661 .665 .649 .605 .682
2021 .656 .653 .650 .645 .629 .602 .656 .650 .639 .647 .625 .593 .656†

2022 .496 .494† .487 .486 .481 .441 .490 .492† .479 .484 .471 .427 .495†

Avg. .619 .619† .616† .615† .607 .572 .615† .615† .607 .612† .596 .560 .620†

D
oc

um
en

t 2019 .658 .683 .678 .667 .689 .663 .638 .672 .685 .669 .692 .646 .697
2020 .622 .640 .639 .661 .655 .644 .636 .638 .650 .642 .657 .638 .639
2021 .678 .671 .681 .683 .683 .629 .677 .681 .681 .670 .679 .644 .676
2022 .424 .425 .431 .425 .409 .389 .421 .446 .443 .417 .424 .405 .428
Avg. .575 .582 .586† .587 .584† .556 .573 .590 .594 .577 .589 .561 .587†
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Sparse Cross-Encoder
TIREx Table

Corpus Doc. Len. First Stage monoT5 monoBERT Sparse CE
Base Large 3b Base Large 512 4096

Antique 49.9 .510 .505 .527 .537 .507 .484 .540 .174
Args.me 435.5 .405 .305 .338 .392 .314 .371 .313 .180
CW09 1132.6 .178 .186 .182 .201 .192 .134 .198 .212
CW12 5641.7 .364 .260 .266 .279 .263 .251 .312 .338
CORD-19 3647.7 .586 .688 .636 .603 .690 .625 .673 .642
Cranfield 234.8 .008 .006 .007 .007 .006 .006 .009 .003
Disks4+5 749.3 .429 .516 .548 .555 .514 .494 .487 .293
GOV 2700.5 .266 .320 .327 .351 .318 .292 .316 .292
GOV2 2410.3 .467 .486 .513 .514 .489 .474 .503 .460
MED. 309.1 .366 .264 .318 .350 .267 .298 .237 .180
NFCorpus 364.6 .268 .295 .296 .308 .295 .288 .284 .151
Vaswani 51.3 .447 .306 .414 .458 .321 .476 .436 .163
WaPo 713.0 .364 .451 .492 .476 .449 .438 .434 .296
Average – .358 .353 .374 .387 .356 .356 .365 .260
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Cross-Encoder
Efficiency Graphs
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Set-Encoder
Efficiency

Previous listwise re-rankers are also less efficient.

Model # Parameters Inference Time
RankGPT-4o (20,10) ? ≈35s
RankGPT-4o (100,0) ? ≈11s
RankZephyr 7B 21.1s
LiT5-Distill 248M 4.0s
monoELECTRABASE 109M 0.3s
monoELECTRALARGE 334M ?
Set-EncoderBASE 109M 0.5s
Set-EncoderLARGE 334M ?
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