
Universität Bielefeld

Technische Fakultät

Masterarbeit

im Studiengang Intelligente Systeme

zum Thema:

Deep Learning for Event Detection
from Sports Broadcast Videos

vorgelegt von

Ferdinand Schlatt

Matrikel-Nr: 3129159

1. Gutachterin Prof. Dr. Barbara Hammer
Technische Fakultät, AG Machine Learning

2. Gutachter Fabian Hinder
Technische Fakultät, AG Machine Learning

Bielefeld, im März, 2020

Abstract

Detecting relevant events from long video sequences is an important task in many
domains. Examples include video surveillance or traffic monitoring. Reviewing
video footage manually is often time-consuming and expensive. In these cases, au-
tomatic event detection systems can free human resources for more important tasks.
Recently, artificial neural networks have shown great potential in video processing
tasks. However, most work focuses on classifying short video clips into different
classes. This motivates the development of a neural network architecture that is
able to detect events from a continuous stream of frames, thereby allowing arbi-
trary length videos. Player-ball interactions in soccer broadcast videos are used as
the test domain. These interactions provide an ideal testbed as they establish a
clearly defined event structure in a visually consistent environment. Next to the in-
troduction of a novel data imbalance sensitive loss function, different recurrent and
attention augmented convolutional networks are tested on the task. In the end, the
best model succeeds in detecting soccer events in general but often fails for chaotic
play phases or when the ball is occluded.

Contents

1 Introduction 1

2 Related Work 5
2.1 Soccer Visual Analysis & Event Detection 5
2.2 Neural Network Action Classification 6
2.3 Neural Network Event Detection . 7
2.4 Neural Network Visual Attention . 7

3 Data 9
3.1 Videos . 9
3.2 Events . 11

3.2.1 Data Imbalance . 13

4 Methodology 15
4.1 Frame Processing . 15

4.1.1 ResNet . 16
4.1.2 Attention Augmented Convolution 17
4.1.3 Recurrence . 18

4.2 Detector . 20
4.3 Preprocessing . 20
4.4 Loss Function . 22

4.4.1 Weighted Binary Cross Entropy 23
4.4.2 F1 Loss & MCC Loss . 23
4.4.3 Experiment Details & Hyperparameters 26

5 Evaluation 27
5.1 Model Comparisons . 27

5.1.1 Preprocessing . 29
5.1.2 Loss . 30
5.1.3 Model Architecture . 31

5.2 Detector Evaluation . 36
5.2.1 Full Video Evaluation . 36
5.2.2 Manual Event Detection Evaluation 38
5.2.3 Speed . 39

i

5.2.4 Classification . 39

6 Discussion & Future Outlook 43

7 Conclusion 47

ii

1 Introduction

Detecting relevant events from long video sequences is an important task in many
domains. For example, segmenting surveillance videos [54] or monitoring traffic to
report live accidents or congestions [34]. Reviewing video footage manually is often
time-consuming, tedious and expensive, but in many cases necessary. In these cases,
automatic event detection can help by increasing efficiency and accessibility. Either
fully automatic systems or semi-automatic systems which remove irrelevant video
segments could reduce the manual labor time and free human resources for more
difficult tasks.

In the professional sports industry, data and video analysis are becoming an
increasingly important field. Especially soccer, as the world’s most popular sport,
is developing a need for smarter and faster analysis. For example, broadcasters
want to produce high quality and informative content for the user, visualizing and
integrating important statistics about a game as quickly as possible. Scouts want
to review video footage of prospective talents and the post-game video analysis has
become a vital part of coaching.

A growing number of tools and techniques have been developed to aid in these
processes. As examples: simple events can be extracted using ball and player tra-
jectories [53], audio and camera cues have been used to determine important event
segments [28, 44] and neural network ensembles were trained to detect set piece
situations [9]. The drawbacks of all previous approaches can be split into two cate-
gories. In the first case, additional data on top of or instead of the broadcast video is
required. Multi-camera systems, GPS tracking or other means are used to augment
the visual data. In the other, the type of detected events is confined to an extremely
small and easily detectable set. A system working only on a broadcast video that
can detect a wide variety of events has yet to be developed and is the topic of this
thesis.

Specifically, the goal is to develop a model that is capable of discerning if a
frame of a soccer broadcast video contains an event. In essence, a video should
be segmented into alternating groups of frames with and without event presence.
Because of the length of soccer broadcast videos, and also to enable online analysis,
frames are tagged sequentially. That is, a model does not have access to the full
video at once. An event may be any basic interaction of a player with the ball, for
instance, passes, shots, receptions or headers. Many relevant events from a soccer
game can then be extracted with an adequately accurate model and further measures

1

for event classification can be applied.
This thesis compares the performance of several different neural network archi-

tectures for soccer event detection. Neural networks have been pushing the state of
the art in computer vision tasks rapidly in the recent past. AlexNet’s win in the
2012 ImageNet competition sparked a quick succession of advances in image pro-
cessing [32]. ResNets were able to show that training extremely deep convolutional
networks is feasible [21] and Mask RCNNs set an unprecedented standard in object
segmentation [22]. The principles learned from image processing have also success-
fully been applied to video processing. For example, C3D networks expanded 2D
convolutional networks to a third time dimension for video action detection [55].

The prominent challenge when working with video data is combining spatial and
temporal features. The transition from detecting static features in a single frame
to features describing movement over multiple frames is far from trivial. Multiple
different approaches to tackle this problem have been used in the past. They can
be coarsely divided into three categories. First, passing a stack of frames into a
3D convolutional network [66]. Second, using a so-called two-stream approach, by
applying two separate convolution networks on the RGB frames and the optical flow,
and combining these in a fully connected layer [50]. Lastly, applying frame-wise 2D
convolutions and passing the image feature vector into a recurrent network [4, 51].
Different combinations of the methods are also possible [18, 61]. However, all the
previous frameworks were applied to entire videos as a whole. Because of the length
of soccer broadcast videos, only the latter framework is a viable option and is tested
in this thesis.

Next to the spatiotemporal information, to correctly detect interactions between
players and the ball, a model must be able to determine the relations between
different objects within an image. By only considering a local neighborhood, the
2D convolution operator has a major drawback in that regard. Recent advances in
natural language processing have shown that self-attention is an effective method
for capturing global relations between words [60]. Self-attention has since been used
to augment convolutional layers, granting them the capability of capturing local
features and setting these into a global context [6].

Furthermore, because soccer events are spread sparsely throughout a broadcast
video, a large majority of frames are tagged as not containing an event. Neural
networks have difficulties when working with imbalanced data [62]. To counteract
the data imbalance, imbalance sensitive loss functions can be used. Next to the
popular weighted binary cross entropy, it is also possible to augment the F1 score
to use it directly as the loss function [41]. Because of the F1 score’s bias for the
positive class, an alternative loss based on the Matthew’s correlation coefficient is
suggested in this thesis.

All these developments motivate the specific network architectures tested in this
thesis. Starting from a default ResNet-50 architecture, iteratively different archi-

2

tectural enhancements are tested for performance improvement on the soccer event
detection task. First, a range of image preprocessing methods is tested. Next, iden-
tical networks are trained using the three aforementioned loss functions. Finally,
the ResNet is expanded to include attention and a recurrent LSTM layer. Because
no comparison models exist, all models are compared to a random baseline. To
conclude, the best model is evaluated in finer detail and potential deficits discussed.

In summary, this thesis is considered to make several contributions: 1) attention
augmented convolution is combined with a recurrent network for video event detec-
tion 2) instead of video level labels, the model is trained to detect events from an
arbitrary length video continuously 3) the Matthew’s correlation coefficient loss is
introduced as an unbiased data imbalance sensitive loss function 4) event detection
is applied to live sports broadcasts on a level of unprecedented detail.

In the end, none of the preprocessing methods were able to improve soccer event
detection and were not applied in any of the subsequent experiments. For the data
sensitive loss functions, the F1 and Matthew’s correlation coefficient loss were able
to show significant performance improvements over the commonly used weighted
binary cross entropy. Attention augmentation was unable to provide any additional
value. On the other hand, adding recurrence did lead to measurable performance
increases across all evaluation scores. The final model then showed to successfully
detect clearly separated events but struggled for events in more chaotic phases of
play with frequent occlusions or deflections.

The remainder of the thesis is structured as follows. First, related work in the
fields of sports and deep neural network event detection is summarized. Next, the
video and event datasets, the respective measures to clean the data and the different
levels of preprocessing are described. Details about the video processing and event
classification network architectures follow. Subsequently, the different experiments
are evaluated. The results and potential future improvements are discussed next.
Finally, a summary concludes the thesis.

3

4

2 Related Work

2.1 Soccer Visual Analysis & Event Detection

A large portion of research in automatic visual analysis in soccer revolves around
tracking the players and ball [38, 48, 58, 67]. Notably, in [68], Zhu et al. use
Gaussian mixture models to mask out the field and an SVM, in turn, to detect and
track players in the non-masked candidate regions. Beetz et al. [5] use a similar
approach but add color matching as well as compactness and height constraints on
the non-masked player blobs to improve player detection. Additionally, they add
tracking by matching a field model to detected field lines and thereby estimate the
camera parameters. Sabirin et al. improve on player tracking further by adding an
extra occlusion handling step [46].

This tracking data has been used in multiple studies for event detection and
classification. Stein et al. develop a framework to hierarchically combine events
parsed from tracking data [53]. 3D positional player and ball data is combined with
a video in [57] by Tsunoda et al. to detect pass, dribble and shot events in futsal
videos using hierarchical LSTMs. Imai et al. evaluate several different machine
learning techniques on a professionally tracked soccer game to detect ten different
event classes [26]. Next to tracking data, Pradeep et al. have also used audio to
detect significant events in sports videos [44]. It is assumed that the amplitude of
the audio track is highest around important events when the commentator is most
excited. Subsequently, frames are extracted around audio peaks from the video.

Many detection systems also rely solely on visual input. Early attempts usually
used hand-crafted visual features combined with a range of machine learning tech-
niques. Chen et al. use a combination of color ratio, camera angle and temporal
features with a small neural network to detect corner kicks, throw-ins and free kicks
close to the box [9]. Bag of visual words is used by Baccouche et al. in [3] to extract
features that are passed into an LSTM to detect different set pieces and shots on
goal. In [47], Sarkar et al. detect passes from player and ball ROIs using a minimum
cost flow network.

More recently, deep neural networks have been used to extract spatiotemporal
features from soccer videos. Cioppa et al. train a ResNet to extract the player and
field line segmentation masks [11]. The mask is then used to compute the camera
angle and position of players to heuristically classify a frame into four different game

5

2.2. NEURAL NETWORK ACTION CLASSIFICATION

phases. To train a model end to end, Cioppa et al. then propose a novel loss function
for extremely sparse events [12]. The loss function is evaluated on the SoccerNet
dataset [19], improving on the baseline model by 12.8% mAP. Albeit, SoccerNet
only contains goal, card and substitution events.

Finally, Tsagkatakis et al. [56] implement a two-stream network to classify two
to three second video clips into goal and no goal classes. To conclude, previous
literature commonly focuses only on the task of classifying short sequences. When
the temporal location of an event is being detected, the set of events is extremely
limited. This is usually due to the lack of an appropriate dataset. In contrast to
this, in this thesis, the temporal location of a large set of basic soccer events is
detected from an extensive professionally tagged soccer event dataset.

2.2 Neural Network Action Classification

Thanks to many challenging and extensive datasets [1, 30, 33, 49, 52], especially
the task of action classification has been advancing the state of the art in neural
network video processing. Karpathy et al. explored different techniques to fuse
the feature maps of frame-wise applied pretrained convolutional networks [29]. So-
called slow fusion in which temporal convolutions are applied in different levels
within the convolutional hierarchy proved to be most effective but showed only
little improvement over a static classification model. In [50], Simonyan et al. first
proposed the two-stream approach, training two separate convolutional networks on
RGB frames and a stack of optical flow maps. Ballas et al. meanwhile proposed
an architecture leveraging recurrent neural networks [4]. The hidden layers within
GRU RNN cells were replaced by 2D convolutions to create recurrent spatial neural
networks, which were applied to feature maps from a pretrained network. Another
alternative was proposed by Tran et al., where 3D convolutional networks were
applied to stacks of RGB frames to learn spatiotemporal features [55].

Following this, many prominent publications relied on a mix of the previously
mentioned work but improved the frame sampling techniques or pretrained convo-
lutional kernels. I3D networks, proposed by Carreira et al., expand pretrained 2D
convolutional kernels to 3D, circumventing the need to train 3D convolutions from
scratch [7]. Wang et al. then proposed an improved sampling technique, coined TSN,
in which frames are subsampled from different video segments and a class score com-
puted from the aggregated sample features [61]. Lastly, the SlowFast framework by
Feichtenhofer et al. used two different pathways, alike to two-stream networks, to
achieve state of the art accuracy on many prominent action classification datasets
[18]. One pathway uses high temporal resolution to capture motion, with a low
channel granularity to improve performance. The second pathway samples frames
at a low resolution, capturing spatial semantics.

6

2.3. NEURAL NETWORK EVENT DETECTION

2.3 Neural Network Event Detection

While action classification is the task of finding which action is present in a video,
this thesis examines action detection, i.e. locating the time at which an action has
occurred. The two most prominent datasets for this task are ActivityNet [16] and
THUMOS 14 [25]. Both include a large set of untrimmed action videos from various
action classes, with annotated temporal boundaries of the actions.

Xiong et al. improved on the initial benchmark scores by using a TSN network to
detect actionness of sampled video segments [65]. The actionness scores were used to
stitch together temporal proposals, which were subsequently passed into an action
classification network. In contrast to this top-down approach, Lin et al. employed a
bottom-up approach. A two-stream network is trained to detect actionness, as well
as starting and end probability sequences for an entire video [36]. These vectors
are then passed to a so-called boundary sensitive network to compute proposals and
proposal confidences to obtain finer control over temporal boundaries.

The concept is improved upon in [35] by matching the spatiotemporal features
from a two-stream network to a matrix of densely sampled proposal boundaries.
Specifically, a boundary matching network computes probabilities for pairs of pro-
posal start times and durations. Finally, while just computing action boundaries
indirectly, Xu et al. use C3D features with a segment proposal network to create
temporal sub action proposals [66]. These are passed into an LSTM to generate
captions for videos in the ActivityNet dataset.

2.4 Neural Network Visual Attention

Regarding visual attention, a couple of different important contributions have been
made in the recent past. In essence, visual attention attempts to solve the issue that
the output of a convolutional network only depends on the local neighborhood in
the input. Dynamic filter networks, by Jia et al., augment the classical convolution
kernel to dynamically change with the input [27]. That is, the input that a kernel
is being applied to depends itself on that input. Hu et al. on the other hand add
a channel-wise learnable weight to the output of a convolutional layer [24]. Adding
these so-called squeeze and excitation layers to a ResNet-50 network improves its
score to that of a plain ResNet-101 architecture, while only adding little additional
computational cost. However, these layers do not allow for inferences across a single
channel, i.e. pixel-wise attention. For this, Bello et al. borrow the self-attention
concept made successful by the Transformer [60] architecture for natural language
translation tasks [6]. Self-attention is expanded into two dimensions to allow for
pixel-wise global attention within a convolution kernel, further improving on the
result of squeeze and excitation networks.

7

2.4. NEURAL NETWORK VISUAL ATTENTION

8

3 Data

In the following, an overview of the data is given. The entire dataset encompasses a
total of 183 fully tagged videos from the 2018/2019 English Premier League season,
provided by matchmetrics GmbH [20]. A tagged video consists of the TV broadcast
video, as well as a set of timestamps and ids marking the events. Superfluous parts
like halftime and pre-/postgame segments are cut from the video. In total, 10% of
data was set aside for testing and validation. Of all videos, twelve were randomly
selected to create the test set, six videos are used as the validation set and the
remaining 165 comprise the training set. Events were exhaustively tagged by human
operators. The number of events per game ranges from 1717 to 3338, with a total
of 479,218 tagged across all videos. The following sections provide further details
about the video and event processing pipeline, as well as a short remark about the
data imbalance between video frames and events.

3.1 Videos

To train a neural network efficiently, a data loader needs to be able to quickly transfer
training data from storage to GPU memory. In this regard, working on long video
files poses additional challenges compared to other data modalities. The first major
issue is that video files are usually quite large. Accordingly, loading an entire video
into memory is often not feasible or practical. At the same time, to reduce the size
in storage, videos are encoded. This makes random sampling of frames extremely
inefficient. To sample a single frame, multiple preceding frames need to be decoded
first. A solution is needed which allows for efficient and randomized sampling.

In a soccer match, play is frequently disrupted by short breaks. The ball travels
out of bounds or a player is fouled which creates a longer eventless sequence. These
breaks in play give natural time points at which to cut a video and divide it into a
subset of smaller clips. By randomizing the clip order, a semi-random but efficient
sampling can be achieved. A video decoder is opened for each video file and decodes
the first frame of a random clip. Because decoders are designed to efficiently access
successive video frames, the following frame can be grabbed quickly. Each decoder
then parses successive frames until the end of a clip is reached. The decoder then
seeks to the first frame of the next random clip.

The timestamps of the events are used to set the video clip bounds. A video clip

9

3.1. VIDEOS

is defined as a set of consecutive frames that start and end on an event timestamp. A
clip may contain multiple other event timestamps, with a maximum time difference
of three seconds between two events. This definition allows for extremely short clips
if, for example, two isolated events happen in quick succession. However, as events
are usually grouped in longer chains, this case is exceedingly rare. A random number
of up to twelve frames are added to the front and end of a clip to ensure that event
on- and offsets are not correlated with clip on- and offsets.

Usually, when training a recurrent neural network, complete sequences are passed
through the network. However, the video clips are most often still too long to fit
into GPU memory. Instead, another solution is to pack individual frames from
multiple video clips into a single batch. The model can then update its internal
memory frame by frame. It is therefore additionally important to guarantee that
a batch does not contain more than one frame from the same clip. Otherwise, one
memory state may be overwritten by another from the same clip. Further details on
exactly how the recurrent network’s memory is computed and stored can be found
in Section 4.1.3. In summary, a batch from the video clip dataset then consists of
multiple frames from pairwise different randomized video clips.

A couple of further preprocessing measures were applied to the videos to increase
decoding speed and also to decrease GPU memory usage. First, all videos were
standardized to 15 frames per second to reduce the total number of frames. Next,
to decrease the memory footprint, the resolution was decreased to 400 by 226 pixels.
In a final step, the image is normalized channel-wise to zero mean and one variance
by the RGB means and standard deviations. In the end, the clip dataset consists of
35,102 clips with 7,144,079 frames. Figure 3.1 provides a couple of example frames.

These examples also nicely demonstrate some of the challenges for a model to
reliably detect events. Soccer broadcast videos make use of different techniques to

Figure 3.1: Example frames from the video dataset.

10

3.2. EVENTS

make the viewing experience more enjoyable. The camera pans and zooms with
the action. Different camera angles are used to highlight certain events. A model
must, therefore, be able to cope with different camera angles, close up shots or visual
overlays occluding parts of the frame. Additionally, different lighting conditions can
drastically alter the appearance of the field. In all cases, a model must be able to
extract robust spatiotemporal features to be able to detect events reliably.

3.2 Events

The focus of this thesis is to detect events with an interaction between a player and
the ball. Soccer events are therefore defined as elemental action points. That is,
every event is described by a single time point and an action type. For example,
these include a player passing the ball, executing a throw-in or tackling the player
with the ball. It is important to note that these do not include events that span
over a longer period as well as events not involving player-ball interaction. Among
others, the excluded events include goals, the ball leaving the playing area, referee
actions or complex events like dribbling the ball.

The rationale behind excluding these types of events is that player-ball inter-
action events define a clear but difficult task. A model must be able to extract
spatiotemporal features from an image to be able to set a player and ball into con-
text. Since only the player and ball are of interest though, it is a strictly defined task
that is comparably simple to diagnose for issues. This is especially important for an
initial study such as this one, as no previous work could be found to compare perfor-
mance with. By including the other event types, the set of required spatiotemporal
features would increase. For example, to detect fouls, inferences on player-player
interactions and player allegiance are required. This adds further variability and in-
creases the difficulty of validly evaluating a model. Therefore, the final set of event
types only includes events involving player-ball interactions.

The final set includes 17 event types in total. Table 3.1 gives an overview of the
different event types and their respective quantities. Aerial duels include all events
where two opposing players attempt to touch a high ball. A touch of the ball that
is only intended to bring the ball away from a player’s goal is defined as a clearance.
Control events are small dribbling touches by a player. A contested ball is another
type of duel where two players reach the ball at the same time and no clear ball
possession could be defined before the event. Involuntary or uncontrolled touches by
a player are counted as deflections. There are two different categories for goalkeeper
actions based on the body part they are executed with. Goalkeeper kicks are long-
range kicks where the goalkeeper kicks the ball directly from the hands. A goalkeeper
throw is when the goalkeeper releases the ball directly from the hands. Kick-offs are
the initial touch of the ball to start a half or to reinitiate play after a goal. Passes

11

3.2. EVENTS

include any touch of the ball that is directed at a teammate. Ball recoveries are the
uncontested variant of contested balls. That is, a ball is located in open space and
collected by a player without opponent interference. Set pieces include a variety of
different events that all reinitiate play because of different reasons. These include
corner kicks, goal kicks and throw-ins for example. If a player actively blocks another
player from touching the ball to stay in possession, this is considered a shield. Shots
are any ball touches intended to put the ball past the goal line. Tackles are defensive
actions in which a player without possession of the ball attempts to gain possession
from another player. Finally, take-ons are ball touches to move past an opposing
player.

The event counts show that the large majority of events are passes and com-
pletions. They make up over 67% of all events. The other 15 events make up the
remaining third. Because the task is to detect events and not to classify them, this
data imbalance doesn’t pose an immediate problem.

Together, these event types constitute an almost exhaustive set, such that close
to any interaction between a player and the ball can be classified into one of these
categories. An event is linked to the video dataset by its timestamp. For every
event, the frame with the closest timestamp to the event timestamp is considered
the event frame. Due to human error and frame discretization, the timestamp isn’t

Event Type Number of Events Ratio

Aerial Duel 7392 01.99%
Clearance 11509 03.09%
Completion 97535 26.23%
Control 28180 07.58%
Contested Ball 1647 00.44%
Deflection 12389 03.33%
Goalkeeper Kick 449 00.12%
Goalkeeper Throw 881 00.24%
Interception 4400 01.18%
Kick-Off 431 00.12%
Pass 152945 41.12%
Recovery 17149 04.61%
Set Piece 12096 03.25%
Shield 2071 00.56%
Shot 4315 01.16%
Tackle 8764 02.36%
Take-On 9760 02.62%

Total 371913 100%

Table 3.1: Overview of event types with number of occurrences and ratios

12

3.2. EVENTS

always exact. It may be offset by a couple of frames in front of or behind the actual
event. As a solution, instead of marking a single frame as the event frame, a window
of frames around the event frame was therefore defined as all containing that event.

Manual testing showed a window of an additional three frames before and after
an event to be a suitable window to capture the majority of all events. Figure 3.2
shows an example of video frames around an event and how the individual frames
are classified. An event hence spans seven frames in total, except in cases where two
events occur in quick succession. Here the event frame windows may overlap and
are then combined into a larger event window.

3.2.1 Data Imbalance

Many machine learning algorithms, including neural networks, have difficulty work-
ing with imbalanced data. Because of the frequent inactive play phases, soccer
events are spread sparsely throughout a game. On the complete video dataset, the
event to frame ratio is about 1:44. The aforementioned methods for cleaning the
data fortunately also help to solve the data imbalance. Cutting the video into clips
reduces the number of frames by more than half and improves the ratio to about

Figure 3.2: Example of an event frame window around a pass event. The frames
progress from left to right and top to bottom. A green border denotes the frame is
classified as an event. A red border signifies a frame is eventless.

13

3.2. EVENTS

1:19. The event frame window leads to a further improvement of about 1:5. Of all
7,144,079 frames, 1,439,854 are classified as events. This minor imbalance can be
solved by augmenting the loss function. Details can be found in Section 4.4.

14

4 Methodology

To detect events in a video, a system must have a video processing pipeline capable
of extracting features describing movement. In this thesis, a convolutional neural
network is proposed as a backbone to extract spatial features from video frames.
Next, a recurrent neural network sets the spatial features into a temporal context.
The spatiotemporal features can then, in turn, be passed into a detector to de-
termine the eventedness of frames. This section describes the architecture for the
convolutional backbone, recurrent and detector networks. Figure 4.1 gives a visual
overview of the entire model structure. Each design decision is discussed with the
event detection task in mind. Next, several different image preprocessing techniques
are presented. These aim to improve event detection by masking irrelevant content
in a frame. The various loss functions used to cope with the data imbalance are de-
scribed next. Finally, an overview of the hyperparameters and other training details
for the range of experiments concludes this section.

Preprocessor

ResNet
(Att.)

LSTM

Detector

y1
y2
. . .
yn

Nx3x226x400 Nx2048

Figure 4.1: Graphical overview of the neural network architecture. Dashed lines
show alternative paths which are experimentally evaluated for effectiveness. Fur-
thermore, the ResNet is tested with and without attention augmentation.

4.1 Frame Processing

As mentioned before, three main architectures have been used in neural network
video processing. The first is to expand 2D convolutions to three dimensions, jointly
learning spatial and temporal features in a single network. Secondly, spatial and
temporal features are learned separately by two different convolutional networks and
combined. Lastly, spatial features are passed into a recurrent network, which can
output temporal features by having access to past frames in its memory.

15

4.1. FRAME PROCESSING

Even though the former two frameworks have produced better results on video
classification tasks [7], the main drawbacks are that a video, or at least the relevant
parts, must be passed to the model in one piece. Detrimentally, for the task of
detecting soccer events, these methods cannot be applied to lengthy videos. Memory
constraints prevent passing long videos into a model. An argument can be made
that a video can be split into shorter sequences and processed separately. This
raises the question of where best to cut the videos and how to smoothly combine
the output. In conclusion, using a recurrent neural network on spatial features is
the most natural approach to processing long videos and is hence the architecture
used in this thesis. For spatial feature extraction, a ResNet-50 architecture is used.
Spatial features are then passed into an LSTM network to add temporal context.
Finally, a simple fully connected network predicts a scalar eventedness value of a
frame.

4.1.1 ResNet

Previous work has shown that convolutional neural networks are effective at extract-
ing spatial features from images [8, 10, 64]. Specifically in this thesis, a ResNet is
used. ResNets are especially well-known for their great performance while also being
lightweight. They were first introduced in 2016 by He et al. [21], who added skip
connections to bypass blocks of convolutional layers. The idea being for information
to flow past a block to combat the vanishing gradient problem. Instead of learning
a mapping F from input to target output F(x) = H(x), these blocks then learn
the residual between the input and output FR(x) = H(x) − x. This residual map-
ping earns the architecture its name. Residual layers enabled comparably simple
training of extremely deep networks, increasing model capacity while keeping model
complexity low. In the original paper, a range of networks varying in size were
trained on the ImageNet dataset [13]. For this thesis, the ResNet-50 architecture,
featuring 50 parameter layers, is chosen as a good middle ground between model
complexity and efficiency.

Another concept that has advanced neural network image processing perfor-
mance is transfer learning [40]. Commonly used in scenarios where data is extremely
scarce, a model is first pretrained on a related but larger dataset. Afterward, the
network can be fine-tuned on the target task.

This is especially applicable for image processing, as the learned convolutional
kernels are often universally pertinent. Early convolutional layers often learn Ga-
bor filters or edge detectors. The further in the convolutional hierarchy, the more
complex and specialized kernels become. For example, the lowest level kernels may
even react to specific textures or shapes [45]. These pretrained kernels, therefore,
provide a value for virtually any image processing task.

Even when data is not scarce, fine-tuning off of a pretrained network provides

16

4.1. FRAME PROCESSING

many benefits. Training time is cut and often a pretrained network can result in
higher evaluation scores. Therefore, a ResNet pretrained on the COCO dataset is
used. The COCO dataset is an extensive image object detection dataset [37]. It
contains, among others, images with people and soccer balls. For this reason, it is
especially well suited for soccer event detection.

Finally, the ResNet outputs a y ∈ R[2048×8×13] spatial feature vector. The height
and width dimensions are squashed by computing the average. The 2048 dimen-
sional spatial feature vector is fed through a final fully connected layer of the same
dimension. The final output vector is then passed on for further processing.

4.1.2 Attention Augmented Convolution

A recent promising addition to convolutional neural networks was adding self-
attention to the convolutional kernel [6]. The strict locality of a convolutional layer
prevents any long-range inferences between image features. This work was able
to show that by adding visual attention, this constraint can be lifted. Attention
augmented ResNets were shown to provide major improvements in object detec-
tion, elevating the performance of a ResNet-50 to the performance of a ResNet-101
architecture.

In soccer event detection, it is especially important to determine the spatial
relations between players, the ball and the field. Is the ball at the foot of a player,
high up in the air or out of play? To make these kinds of inferences, a model may
greatly benefit from the capability of setting local features into a global context.

To augment a convolutional layer with self-attention, some of the convolutional
channels are replaced by a two-dimensional version of the dot product attention
popularized by the Transformer architecture [60]. Within the original publication,
the effects of replacing all channels with attention augmented convolutions were
tested. However, it was found that a half and half split was more effective. To
accommodate image data, the positional encoding, used to determine the relative
position of inputs to one another, needs to be expanded to two dimensions. This
is solved by adding a fully connected layer to learn embeddings for relative width
and height differences between pixels. The output A of a visual attention head is
therefore defined as:

W = Softmax

(
QKT + SrelH + SrelW√

dk

)
A = WV

Q ∈ R[dq×H·W], K ∈ R[dk×H·W] and V ∈ R[dv×H·W] represent the query, key and
value matrices. They are computed by passing half of the input image features

17

4.1. FRAME PROCESSING

X ∈ R[C/2×H×W] through a convolutional layer to obtain attention features Y ∈
R[dq+dk+dv×H×W]. These are then flattened along the height and width dimension
and split for each of the matrices. W ∈ (0, 1)[H·W×H·W] is the attentional weight
matrix, dictating how much a pixel vci ∈ V attends to another pixel vcj ∈ V .

Up to this point, the definition is equivalent to the dot product attention defined
for Transformers. However, SrelH and SrelW are pixel-wise relative position weight
matrices, giving the attention weights W additional 2D spatial context. Note that
the batch dimension, as well as the splitting of attention over multiple heads, have
been omitted for simplicity. The attention output is then reshaped back into a 2D
pixel representation and passed through a final 1×1 convolutional layer. It can then
be concatenated with the output from the convolutional layer that was applied to
the other half of the input channels.

For the dimensions, dq, dk and dv of the query, key and value matrices, the
recommendations of the original paper are adopted. The same holds for the number
of attention heads nh. dq and dk are set to double the number of input channels
to the attention layer. For example, the final bottleneck block of the ResNet-50
architecture receives a 1024 channel input. As only half of the channels are passed
to the attention layer, the dimensions are therefore set to dq = dk = 1024. dv
determines the number of output channels of the attention layer. Again, since half
of the output should be attention augmented and the final block has a 512 channel
output, dv is set to 256. Finally, nh is set to 8.

GPU memory constraints prevent applying attention augmentation to all ResNet
blocks. Attention augmentation adds an additional O(HWdhk) memory cost on top
of a plain ResNet. This increased memory cost is mainly due to the pairwise mul-
tiplication of the flattened pixel query Q and key K matrices. As a consequence,
doubling the size of an image increases the memory footprint by a factor of four.
Fortunately, the lower in the convolutional hierarchy, the smaller a processed im-
age becomes. In consequence, the memory footprint also decreases and attention
augmentation applied to lower-level blocks requires less GPU memory.

This memory constraint requires making a trade-off between batch size and the
number of layers attention could be applied to. In the end, attention augmentation
is only applied to the final layer of the ResNet. Additionally, no pretrained attention
augmented ResNet models could be found and time constraints prevented pretrain-
ing a model for this thesis. To take advantage of transfer learning to the fullest, all
blocks preceding the attention block use pretrained weights. The attention block
and the output layer are trained from scratch.

4.1.3 Recurrence

After spatial feature extraction, an LSTM network is used to add temporal context.
LSTM networks are a type of recurrent neural network in which information from

18

4.1. FRAME PROCESSING

past inputs is saved in an internal memory cell, also called cell state [23]. Three
input dependent gates augment this cell state. For each new input sample, the
input is first combined with the output from the previous step (called hidden state).
This expanded input vector is fed into each of the gates to update the internal
cell state. The first gate, named forget gate, decides how much of the cell state
should be forgotten. Next, an update or input gate determines how much of the
new input information is transferred to the cell state. Finally, an output gate is
used to combine the cell state with the expanded input vector to obtain the output
vector. This output vector then also acts as the hidden state for the next time step.
For a more concise visual overview, see Figure 4.2.

Normally, an entire sequence is given to an LSTM at once and the cell and
hidden state can be reused for each time step. As mentioned in Section 3.1, this
is not feasible for the length of videos used in this thesis. Instead, a single input
batch consists of a set of frames from multiple different videos. To accumulate an
informative cell and hidden state, on receiving the spatial features x

〈t〉
i from the t’th

frame of video number i, the LSTM also has to receive the cell state c
〈t−1〉
i and hidden

σ σ Tanh σ

× +

× ×

Tanh

c
〈t−1〉
i

h
〈t−1〉
i

x
〈t〉
i

Input

c
〈t〉
i

h
〈t〉
i

h
〈t〉
i

Output

h1 c1

. .

. .

. .

hi ci

Figure 4.2: Structure of an LSTM cell. Large parts of the graphic were taken from
[59]. Cell and hidden states are saved in a separate buffer for each video. When the
end of a clip is reached, the cell and hidden state are reset to random vectors for
that video.

19

4.2. DETECTOR

state h
〈t−1〉
i from the previous frame for that particular video. To accommodate this,

the LSTM cell is expanded to include a buffer of cell and hidden states. The buffer
has a separate slot for both the cell and hidden state for every video. As soon as a
video decoder reaches the end of a video clip, the buffered states for that video are
randomly reset and spatiotemporal information needs to be reaccumulated for the
new clip.

In summary, the capability of LSTMs to retain information over multiple
timesteps is used to add temporal context to previously extracted spatial features.
By interpolating over the change of similar spatial features, general spatiotemporal
movement features can be extracted. In essence, a non-recurrent network is only
able to make event predictions based on a single image, while a recurrent network
can utilize movement information across multiple images.

4.2 Detector

As long as the spatiotemporal features extracted from the video processing networks
are adequate, a comparably simple network architecture suffices to detect events.
Subsequently, the detector is made up of a fully connected three-layer network with
ReLu activation functions. For regularization purposes, each layer is followed by
batch normalization and a dropout layer with p = 0.25. Each layer has the same
number of hidden units as the input size of 2048. A final output layer then maps
the feature vector to a single scalar value.

4.3 Preprocessing

In an attempt to aid the neural network in extracting relevant image features, dif-
ferent types and levels of preprocessing are applied to a frame. The goal is to mask
out irrelevant parts of the image and highlight important objects like the ball and
players. In the first step, the stands and fans can be masked out. In a typical
soccer video frame, the field will take up most of the image. Using a hue histogram,
the color of the field is obtained and a contour detection algorithm determines the
field edges. Anything outside of the field is masked. Figure 4.3b shows an exam-
ple with the field extracted. An edge detection algorithm can then be used on the
field masked image to detect the players, ball and lines. An example of the player
masking is given in Figure 4.3c.

Because the algorithmic field and player masking are prone to fail for different
lighting conditions, camera angles or close up shots, a third preprocessing method
is tried. Mask-RCNNs are a state of the art method for image object segmentation
[22]. A Mask-RCNN pretrained on the COCO dataset is used to extract all objects

20

4.3. PREPROCESSING

(a) No preprocessing (b) Field masking

(c) Player masking (d) Mask-RCNN

Figure 4.3: An example of the different types of preprocessing applied to soccer
video frames to attempt to improve event detection.

within a frame. Any detected people and sports balls with a confidence greater than
50% are then pasted into a black image using the computed masks. The players are
pasted in red and the ball in blue. See Figure 4.3d for an example. Even though this
method is not affected by the camera angle, the missing color information of the field
and stands may harm event detection performance. Furthermore, the Mask-RCNN
preprocessing method also occasionally produces unwanted artifacts. Round objects
are occasionally falsely detected as a sports ball. Colored blobs at the edge of the
pitch or in the stands sporadically are mistakenly taken to be people. Evaluating
the preprocessing methods on longer video sequences by hand showed only a small
amount of mistakes on the large majority of frames though. An example where each
preprocessing method made a mistake is given in Figure 4.4.

Since the field masking is the least intrusive, it is hypothesized to only lead
to minor differences in performance. Player masking, on the other hand, masks
out large portions of the image and should produce larger performance differences.
Lastly, the image produced by the Mask-RCCN masking is thought to improve
performance especially in cases where the ball and players can be clearly detected.
Since all methods are error-prone in several situations though, a general decrease in
performance is also plausible.

21

4.4. LOSS FUNCTION

Figure 4.4: Examples where the preprocessing methods fail to capture essential
details of the image. In the first case, a close-up shot of the field disturbs the
color detection for the field masking. In the second, lighting conditions create many
shadows leading to many detected edges. Lastly, motion blur tricks the Mask-RCCN
to detect multiple soccer balls within an image.

4.4 Loss Function

Two main solutions exist to combat data imbalance when training neural networks
[14][62]. Different sampling techniques can be used to artificially inflate the size of
the minority or deflate the size of the majority set [15]. However, because the video
frames need to be sampled sequentially, specialized sampling techniques cannot be
applied. Alternatively, the loss function can be adapted to be sensitive to the data
imbalance [41].

In this thesis, three different loss functions are considered and tested experimen-
tally for effectiveness: weighted binary cross entropy (wBCE), F1 loss and Matthew’s
correlation coefficient (MCC) loss. The three loss functions were selected with sev-
eral different hypotheses in mind. First, it is hypothesized that models trained using
the F1 and MCC loss will score better in data imbalance sensitive evaluations scores.
Furthermore, as they are specifically designed to minimize their respective scores,
the F1 loss trained models are expected to produce the best F1 scores. Identical
behavior is expected for the MCC loss. Furthermore, the F1 loss is expected to
produce models with a greater bias for positive classification compared to the MCC
loss. As the MCC weights positive and negative samples equally, it should achieve
a better balance between classification recall and specificity. The following sections
present the three loss functions in detail.

22

4.4. LOSS FUNCTION

4.4.1 Weighted Binary Cross Entropy

The binary cross entropy function (Equation 4.1) has a simple extension to handle
imbalanced data. By adding a weight w to the positive samples, incorrect classifi-
cations of the positive class can be penalized or incentivized. By scaling the weight
by the degree of imbalance, the wBCE (Equation 4.2) can be artificially biased to
eliminate the imbalance. For this, the weight should be equal to the ratio of positive
to negative samples w = NP

NN
. In other words, the loss then behaves as if the dataset

had an equal amount of samples for both classes [2].

BCE(o, t) = t · log(o) + (1− t) · log(1− o) (4.1)

wBCE(o, t) = −w(t · log(o) + (1− t) · log(1− o)) (4.2)

4.4.2 F1 Loss & MCC Loss

The straightforward method for evaluating a binary classifier is to compute the pre-
cision. Precision only regards positively classified samples though. This especially is
a problem when working with imbalanced data, since always predicting the majority
class scores a high precision, while the minority class is usually the class of inter-
est. For these cases, the F1 score and the Matthews correlation coefficient (MCC)
provide a solution [43]. The F1 score (Equation 4.5) is computed as the harmonic
mean between precision (Equation 4.3) and recall (Equation 4.4):

P =
TP

TP + FP
(4.3)

R =
TP

TP + FN
(4.4)

F1 =
2 · P ·R
P +R

=
2 · TP

2 · TP + FN + FP
(4.5)

where TP , FP and FN are the number of true positive, false positive and false
negative samples respectively. Thereby, the F1 score also takes false negatives, i.e.
incorrectly marked negative samples, into consideration. It ranges between 0 and
1, where 1 is a perfect classification and a score of 0 is achieved, when no positive
samples are classified correctly.

A major drawback of the F1 score is its bias for positive samples. It completely
ignores true negative samples. This is especially apparent for two datasets with
different ratios of positive samples. Assume a random classifier scores a precision
PA = TPA

TPA+FPA
and recall RA = TPA

TPA+FNA
on a dataset A. Data set B is an extension

to A where NB > 0 negative samples are added. As no positive samples are added,

23

4.4. LOSS FUNCTION

TPB = TPA, FPB = FPA and as a consequence PB = PA, i.e. the precision stays
the same. The false negative count, on the other hand, is very likely to change
FNB = FNA + FNB\A. Therefore, RB ≤ RA and finally F1B ≤ F1A . In summary,
a smaller ratio of positive to negative samples automatically leads to a lower F1
score for uninformed classifiers. This can make it difficult to compare the F1 score
across datasets and disqualifies it as a measure where both negative and positive
classifications are important. The MCC is an alternative and improved measure
which eliminates this bias for positive samples [39]. It as defined as:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TN is the number of true negative samples. The MCC ranges between -1 and
1. An MCC of 1 denotes a perfect classification, -1 a perfect inverse classification
and 0 a completely random classification.

Computing the gradient of both functions is not possible as they use the output
label of a classifier to compute the respective scores. To convert them to compatible
loss functions, they need to be converted to their soft variants. Instead of using
the classification label, the classification probability can be used for the true/false
positive/negative scores [41]:

TPsoft =
n∑
i=0

oi · ti TNsoft =
n∑
i=0

(1− oi) · (1− ti)

FPsoft =
n∑
i=0

oi · (1− ti) FNsoft =
n∑
i=0

(1− oi) · ti

oi = σ(h(xi)) =
1

1 + e−h(xi)

where oi is the output of a classifier h for input xi. ti is the target label and σ is
the sigmoid function. F1soft (Equation 4.6) and MCCsoft (Equation 4.7) are then
identical to their normal variants, except that all true/false positive/negative score
are substituted by their soft variants.

F1soft =
2 · TPsoft∑n
i=0 oi + ti

(4.6)

MCCsoft =
TPsoft · TNsoft − FPsoft · FNsoft√∑n

i=0 oi ·
∑n

i=0 ti ·
∑n

i=0(1− oi) ·
∑n

i=0(1− ti)
(4.7)

Furthermore, the loss functions need to be minimized and therefore the values
need to inverted. The F1 score ranges from 0 to 1, so the score only needs to be

24

4.4. LOSS FUNCTION

flipped. The MCC ranges between -1 and 1, so its range needs to be flipped and
the minimum value brought to zero. In the end, the F1 (Equation 4.8) and MCC
(Equation 4.9) losses are defined as:

LF1 = 1− F1soft (4.8)

LMCC = −1 ·MCCsoft + 1 (4.9)

It is important to note that unlike most loss functions, the F1 loss and MCC
loss are not batch independent. The loss for a sample depends on the other samples
within a batch because the false/true positive/negative scores are computed over
all samples within a batch. Furthermore, if there are no positive samples within a
batch, the soft F1 score automatically becomes zero. This leads to a loss of 1, even
though the model had no influence. The derivative of the F1 loss (Equation 4.10)
shows however that if all ti are equal to 0, the derivative is also 0. In turn, the
weights do not receive updates for that batch.

∂LF1

∂oj
=

−2tj∑n
i=0 oi + ti

+
2
∑n

i=0 oiti

[
∑n

i=0 oi + ti]
2 (4.10)

The same properties do not hold for the MCC loss. If a batch contains only
positive or negative samples the denominator of the soft MCC is equal to 0 and
MCC loss is undefined. The loss is set to zero for these invalid batches, mimicking
the behavior of the F1 loss. In consequence, it is important to choose an adequately
large batch size. Not only does a larger batch size give a better approximation of
the true MCC and F1 score, but it also lowers the probability of obtaining invalid
batches. Under the assumption that the batch contains at least one negative and
positive sample, as well as at least one prediction probability oi > 0, the derivative
of the MCC loss is given in Equation 4.11. Both derivatives nicely show the batch
intra-dependence, since the sums over all samples in a batch do not cancel out.

∂LMCC

∂oj
=
−2 · √n1 · n2∑n

i=0 2oi − 1

n1 =
n∑
i=0

o3i

n∑
i=0

(1− oi)3
n∑
i=0

ti

n∑
i=0

(1− ti)

n2 = 2ojtj +
n∑
i=0

(1− oi)ti − oiti

(4.11)

25

4.4. LOSS FUNCTION

4.4.3 Experiment Details & Hyperparameters

Three successive experiment groups are tested for this thesis. First, a plain ResNet
model without attention or recurrence is trained for each of the different preprocess-
ing options using wBCE. The loss functions are tested next, again training a static
ResNet without attention augmentation for each function separately. Based on the
two prior experiments, exhaustive combinations of networks with and without re-
currence and attention are trained. In one final experiment, the event classification
capabilities of the model are tested. For this, the best architecture from the detector
tests is expanded to output a probability for each event type. All networks are imple-
mented using pytorch [42] and experiments run and logged using pytorch-lightning
[17]. Training is done on a single NVIDIA Geforce GTX 1080Ti.

All training details and hyperparameters are identical across all experiments ex-
cept for the batch size. Batch sizes are chosen such that GPU memory utilization is
maxed out for the experiment with the highest memory requirement in an experi-
ment group. For the preprocessing experiments, the Mask-RCNN requires the most
memory and the batch size is set to 16. For the network architecture experiments
the batch size can be doubled to 32. The loss experiments also use a batch size of 32
for comparability. Otherwise, the learning rate is initialized to 0.00005 and weight
updates are done using the ADAM optimizer [31]. All networks are trained until the
validation loss (F1 loss) does not improve for three consecutive epochs. The model
with the best validation score is saved and used for further evaluation. Because the
validation loss converges rather quickly, only 2% of the training data is used per
epoch.

26

5 Evaluation

This section gives a detailed report of the results obtained from the different eval-
uations. In order, the performance of the preprocessing techniques, data imbalance
sensitive loss functions and different model architectures are investigated. The model
architecture evaluations include a closer look at the convolutional and attentional
feature maps, as well as the effect of recurrence on the detection of events early in a
video clip. Next, the final model is evaluated on the full video dataset. A summary
of observations when viewing examples of successfully and unsuccessfully detected
events is reported next. Finally, the model is expanded to enable event classifica-
tion. The evaluation scores per event id provide some interesting insights into the
capabilities of detecting different event types.

5.1 Model Comparisons

As part of the network architecture decision process, multiple configurations are
tested and evaluated sequentially. Starting from a non-recurrent ResNet-50 trained
using wBCE, the prevailing network architecture from one test is carried over to
the next. First, different preprocessing techniques are tested. Next, models are
trained using different data imbalance sensitive loss functions. Finally, attention
and recurrence are added. Since no baseline comparison models exist, all models
are also compared against a random baseline. Events are spread randomly across all
frames of the clip dataset, based on the ratios of the different event types. Applying
the event frame window to the random events then grants a semi-informed random
and comparable baseline prediction.

A range of scores is used to evaluate the different model architectures and loss
functions. These can be split into two categories; based on frames and based on
events. The per-frame scores consider every video frame independently. This creates
a binary classification task to detect if a frame is an event or not. As evaluation
scores, the accuracy, F1 score and MCC are computed. In connection with the
F1 score, the accuracy provides a gauge of how well a model is able to learn the
distribution and ratio of events. A classifier that tags every frame negatively would
achieve an accuracy of 65%, but an F1 score of 0. Any classifier achieving an accuracy
lower than 65% and a positive F1 score is classifying a disproportionate number of
frames as events. Thereby choosing to detect more event frames correctly as a

27

5.1. MODEL COMPARISONS

E E E E

Figure 5.1: Figure showing examples of positive and negative evaluation event frame
windows. An example sequence of frames with four events (E) and corresponding
individual event frame windows (brackets) is shown. A positive evaluation event
frame window (green) can consist of multiple overlapping individual event frame
windows. Negative evaluation event frame windows (red) are any event free frame
sequences at least seven frames long.

trade-off for detecting more frames without an event incorrectly. The MCC lastly
provides a balanced value about a model’s detection performance on both positive
and negative samples simultaneously.

The per-event scores, on the other hand, group several frames together. To
determine if an event is detected correctly, a fraction of t frames of an event frame
window need to be classified as events. That is, if t = 1 all events from an event
frame window need to be classified as an event, for t = 0.5 only half, etc. When
multiple individual event frame windows overlap, they are fused into one event frame
window. As a result, an event frame window may encompass more than the original
seven frames. To obtain negative samples, the chains of frames between two event

Per Frame Per Event

Experiment Model Acc F1 MCC Rec Spec µH

Baseline Random 55.78 32.28 -00.34 24.01 52.30 32.91

Preprocessing

None 51.77 53.90 17.80 77.86 21.64 33.87
Mask Field 46.88 54.19 17.03 90.01 11.02 19.64
Mask Players 41.56 52.11 09.02 93.00 02.77 05.37
Mask-RCNN 46.78 54.10 16.74 92.24 06.82 12.70

Loss
wBCE 54.10 55.15 21.12 77.54 25.90 38.83
F1 59.90 56.43 25.66 68.65 41.60 51.80
MCC 60.96 55.11 24.41 60.87 47.04 53.07

Architecture

Static 59.90 56.43 25.66 68.65 41.60 51.80
Static Att. 56.58 56.29 24.13 76.06 32.21 45.25
LSTM 61.41 58.28 29.20 72.69 40.92 52.36
LSTM Att. 55.39 56.70 24.63 82.31 25.31 38.71

Table 5.1: Comparison table for different model architectures and experiments. All
values given in percent. For each experiment the accuracy, F1 score and MCC are
reported on a per frame basis. For per event metrics, frames are grouped together
based on event frame windows and recall and specificity was computed. The har-
monic mean µH of both recall and specificity is also reported.

28

5.1. MODEL COMPARISONS

frame windows are used. Any set of consecutive non-event frames, with a length
greater or equal to the size of a minimal event frame window, i.e. seven frames, are
considered as negative event sequences. Figure 5.1 provides a visual description of
the positive and negative evaluation event frame sequences.

In the following evaluations, the recall and specificity are computed for t = 0.7.
Additionally, alike to the usage of the harmonic mean in the F1 score, the harmonic
mean over recall and specificity is also reported. A good model should be able to
predict both positive and negative event frame sequences well. By weighting recall
and specificity scores equally, but penalizing extremely low values, the harmonic
mean gives a good gauge over how well a model can detect both event types. Both
the per frame and per event values are recorded in Table 5.1.

5.1.1 Preprocessing

In total, three different pre-processing methods are tested: masking everything but
the field, masking everything but field markings and players and using a Mask-
RCNN to extract a channel-wise binary player and ball image. See Section 4.3 for
more detailed information.

The evaluation scores clearly show that none of the preprocessing methods have
any positive effect (Table 5.2). In per frame evaluation, the model trained on the
raw frames scores better than all other models in precision and MCC. Only the
field masking and Mask-RCNN preprocessing are able to score marginally better in
the F1 score. Both also scoring fairly similarly and only slightly worse than the no
preprocessing model. The player masking in contrast, scores worse than all other
preprocessing methods in all three per frame evaluation scores. With an MCC score
that is almost 50% lower than than the no preprocessing model, both event and
non-event frame detection are shown to suffer from this preprocessing method. A
closer look at the accuracy of 41.56% and F1 score of 52.11% shows that a model
trained with player masking probably classifies an increased number of frames as
positive.

This claim is supported by the per event evaluation scores. The model trained
on player masking is able to achieve the highest recall at 93%, but also the lowest
specificity at 2.77%. This also results in the worst harmonic mean of any model.
Subsequently, a bias for positive classification can be deduced. With varying degrees
of severity, similar behavior can be seen for all other preprocessing methods. The
positive classification bias incrementally drops from the Mask-RCNN over the field
masking to the model without any preprocessing.

This is especially interesting, because of the similar frame evaluation scores of the
Mask-RCNN and field masking models. A similar score in one evaluation category
is expected to equate to similar scores in the other category. This may be caused by
a higher variance of predicted events for the Mask-RCNN model. That is, the ratio

29

5.1. MODEL COMPARISONS

of positive labels between the two models is the same, but the model trained with
field masking clusters positive labels closer together. The Mask-RCNN model, on
the other hand, has a more uniform distribution. However, a further investigation
of this issue goes beyond the scope of this thesis.

In summary, none of the preprocessing methods are able to improve event frame
detection. The results match expectations in so far that the field masking and no
preprocessing models did achieve the most similar scores. In per frame detection,
all models improve on the random baseline with an increased MCC. In event-based
detection, only the model with no preprocessing is able to score a higher harmonic
mean between recall and specificity compared to the random baseline. Albeit, the
models are not specifically trained for this task. Ultimately, this result leads to the
abandonment of the preprocessing techniques for all future model architectures.

Per Frame Per Event

Model Acc F1 MCC Rec Spec µH

Random 55.78 32.28 -00.34 24.01 52.30 32.91

No Preproc. 51.77 53.90 17.80 77.86 21.64 33.87
Mask Field 46.88 54.19 17.03 90.01 11.02 19.64
Mask Players 41.56 52.11 09.02 93.00 02.77 05.37
Mask-RCNN 46.78 54.10 16.74 92.24 06.82 12.70

Table 5.2: Comparison table for the preprocessing experiment of per frame and per
event evaluation scores (%). See Table 5.1 for an overview of the evaluation scores
across all experiments.

5.1.2 Loss

Again, three different variants are tested for the data imbalance loss functions. Next
to the commonly used wBCE, losses directly optimizing for the F1 score and MCC
are also tested. Section 4.4 provides further details on the specific loss functions.

The evaluated scores show three particularly interesting results (Table 5.3).
First, wBCE is the worst loss function for this particular task and network ar-
chitecture by a significant margin. It features the worst scores in every category
except for event recall, which is counteracted by a significantly worse event speci-
ficity and subsequent harmonic mean. Like the player masking preprocessing, with
a characteristic low accuracy, moderate F1 score and high event detection recall,
the wBCE trained model exhibits a positive classification bias in comparison to the
other models.

Second, even though the MCC loss should optimize the MCC score, the model
using the F1 loss outperforms the MCC loss model in both the F1 score and MCC.

30

5.1. MODEL COMPARISONS

In terms of accuracy, the MCC trained model scores slightly higher though. Third,
despite an overall better performance in per frame evaluation, the F1 loss model
performs worse than the MCC model when detecting event sequences. The MCC
model features a lower recall but higher specificity, with a smaller difference between
both. This improved balance leads to a better harmonic mean.

The event evaluation scores therefore mostly coincide with the initial hypotheses.
The performance difference between wBCE and the other two losses is larger than
expected. Also, in the per-frame evaluation scores, the higher MCC of the F1 loss
model raises questions. No plausible explanation could be found for this effect and
exploration of the exact origins is again left for further research.

Per Frame Per Event

Model Acc F1 MCC Rec Spec µH

Random 55.78 32.28 -00.34 24.01 52.30 32.91

wBCE 54.10 55.15 21.12 77.54 25.90 38.83
F1 59.90 56.43 25.66 68.65 41.60 51.80
MCC 60.96 55.11 24.41 60.87 47.04 53.07

Table 5.3: Comparison table for the loss function experiment of per frame and per
event evaluation scores (%). See Table 5.1 for an overview of the evaluation scores
across all experiments.

One further important note to make is the performance increase of the wBCE
trained model compared to the model without preprocessing from the preprocessing
tests. The only difference between both models is the batch size used in training
was doubled for the loss experiment model. A deeper investigation into optimal
hyperparameters is therefore also an open issue. Finally, it was decided to use the
F1 loss during all further experiments. This was mainly due to the higher MCC
score, making it the objectively better detector on a per-frame basis.

5.1.3 Model Architecture

In the final experiment, a plain ResNet-50 model is compared with models that
integrate attention augmentation, insert a recurrent LSTM layer and a combination
of both. The most prominent result from the architecture evaluations is the lower
performance across the board of the two attention augmented models compared to
the models without attention augmentation (Table 5.4). Adding attention to the
model decreases performance in almost all categories. Again, the same behavior as
in previous suboptimal experiments can be found: lower accuracy, with moderate F1
score and higher event recall. An attention augmented model, therefore, classifies a
higher ratio of frames as events to compensate for its uninformed decision. Because

31

5.1. MODEL COMPARISONS

this performance loss applied to both the recurrent and non-recurrent model, it can
be inferred that models with attention augmentation are unable to learn adequate
spatial features.

In contrast to this, recurrence did lead to conclusive performance improvements.
In all per frame evaluation scores, the recurrent model is able to best the plain
ResNet-50 model. An approximately 2.5% performance increase in accuracy, a 3%
increase in F1 score and 14% performance increase in MCC is achieved by includ-
ing recurrence. However, this trend does not directly translate to the event-based
evaluation scores. The recurrent model scores a higher recall, but lower specificity
and therefore does not balance the two values as well as the non-recurrent model.
Still, through a significantly better recall but only marginally worse specificity, the
recurrent model is able to achieve a higher harmonic mean.

Compared to the random baseline, all models are able to improve in all major
evaluation scores. Performance gains across all per frame evaluation scores and an
especially high MCC show that the models learn to detect event frames beyond a
random classification. Even though not specifically trained on the task, the models
are also able to detect grouped event frames better than the semi-informed random
classifier.

In conclusion, the initial hypotheses are partially confirmed. The result for
attention augmentation is a major contradiction, especially considering that this
extension has been shown to improve performance significantly for object detection
tasks [6]. A closer look into why attention augmentation yields no performance
improvements is given below.

However, expanding a network by recurrence does lead to improvements. Still,
in event-based evaluation scores, in which recurrence is expected to add a large
performance boost, it only achieves a slightly better harmonic mean than a model
without recurrence. This may be due to lower performance on events early in a video
clip. A recurrent network may need to process an initial set of frames to obtain an

Per Frame Per Event

Model Acc F1 MCC Rec Spec µH

Random 55.78 32.28 -00.34 24.01 52.30 32.91

Static 59.90 56.43 25.66 68.65 41.60 51.80
Static Att. 56.58 56.29 24.13 76.06 32.21 45.25
LSTM 61.41 58.28 29.20 72.69 40.92 52.36
LSTM Att. 55.39 56.70 24.63 82.31 25.31 38.71

Table 5.4: Comparison table for the model architecture experiment of per frame
and per event evaluation scores (%). See Table 5.1 for an overview of the evaluation
scores across all experiments.

32

5.1. MODEL COMPARISONS

informative internal cell state. This hypothesis is tested and the results reported
down below. As a result, the recurrent model without attention is chosen as the
final model, based on its improved per frame and event evaluation scores.

Attention Weight & Feature Maps

To diagnose the behavior of the attention augmented convolution, the output of
the final attention augmented convolutional block is inspected. Figure 5.2 shows
25 of the 256 feature maps of the convolutional and the attention convolution layer
for two different frames. The feature maps are normalized between the range of 0
and 255 and then saved as grayscale images. On top of this, the weight map for
each of the attention heads is shown. The weight maps are computed by summing
over the first dimension of the attention weights W . They are also mapped to a
grayscale image by normalizing the values to range between 0 and 255. This weight
map represents the total relative influence a pixel had on all other pixels. In other
words, it shows how important a pixel is for computing the output of the attention
augmented convolution.

First, it makes sense to take a look at the attention weights wij for each
of the frames. A well-trained attention mechanism is expected to produce di-
verse weights, while an uninformed attention mechanism would distribute attention
weights uniformly across the pixels. A uniform weighting would weight each pixel
by 1

h·w = 1
8·13 ≈ 00.96%. The maximum weight for any pixel from both frames is

only wmax ≈ 02.20%, with a minimum weight of wmin ≈ 00.31%. This shows that
the attention augmented convolution exhibits an almost uniform weighting and does
not attend to any pixels in particular.

Another interesting perspective is gained from examining the convolution and
attention feature maps. At first glance, both seem to exhibit a varied structure,
denoting a rich spatial feature space. On closer inspection, a comparison of the
two attention feature maps shows that they are both nearly identical. Prominent
pixels with high or low activation are equally distributed in both maps, only differing
slightly in luminance. The same observation can be made on the weight attention
weight maps. Here, the similarity is even more obvious at a first glance. For both
frames, the general structure of the attention weight maps is identical, with only
some areas slightly brighter than others. However, this property cannot be found in
the convolution feature maps. The convolution feature maps exhibit an inherently
different structure for the two different frames.

To quantify this similarity, the structural similarity index (SSIM) can be used
[63]. It computes a metric for two grayscale images based on the luminance, contrast
and structure. The higher the SSIM value, the more similar images are. The com-
parison of the convolution and attention feature maps result in an SSIM of 35.27%
and 68.87% respectively. The combination of SSIM values and identical similarity

33

5.1. MODEL COMPARISONS

Frames Attention Weight Maps

Convolutional Feature Maps Attention Feature Maps

Figure 5.2: Attention and convolutional feature maps for two different frames. The
feature maps are extracted from the last block of the attention augmented ResNet.
The upper right image shows the weight contribution of each pixel from the attention
value matrix.

34

5.1. MODEL COMPARISONS

observations on 100 frames from different videos, lead to a confident conclusion that
the attention feature maps feature a constant structure irrespective of the input
frame.

Finally, the range of activation of the attention feature maps is significantly lower
than that of the convolution feature maps. The convolution features map activations
range between -0.8201 and 0.8892, whereas the attention feature maps only range
between -0.1763 and 0.1955 for the two different frames. This most likely leads to
a greater impact of the convolution feature maps on subsequent layers and in turn
event prediction.

In the end, these results show that the attention mechanism was unable to learn
to attend to any pixels in particular. It outputs a mostly constant feature map,
irrespective of the input frame, indicating that it provides little to no contribution
to the image processing pipeline. In essence, it acts as a bottleneck by removing
half of the feature channels, without providing any additional value. This hypothesis
could be tested by removing the attention augmented channels entirely, but retaining
the reduced channel size. However, this experiment is again left for future research.

Three different explanations for this behavior are considered to be plausible. Ei-
ther, the attention augmented layers were just trained unsuccessfully. To obtain
adequate weights, more training time, a different set of hyperparameters or pre-
training on a more extensive and diverse dataset is necessary. Also possible is that
the hypothesis of an additional benefit for detecting soccer events does not hold.
Perhaps plain convolutional layers are better suited for this kind of task. Lastly, an
incorrect implementation of the attention augmentation also cannot be ruled out.

Early Clip Events

A possible issue with a recurrent detection model could be the necessity to process
an initial set of frames, to accumulate an informative internal cell state. This issue
may reflect itself in the detection recall of events early within a video clip. To test
this, all events within the first 15 frames of a video clip are considered as early events.
Any other events are categorized as late. Table 5.5 summarizes the detection recall
for a model with and without recurrence.

Because of the cell and hidden buffer resets on a new clip, the recurrent model
may be aware of clip transitions. Measures were taken to ensure that event onsets
after clip transitions are randomized. Still, the clip transition may have a priming
effect on the recurrent model. This would explain a higher recall on early events for
the recurrent model. Also, because the videos were split between longer eventless
sequences, in most cases, the initial event in a clip is clearly separated from other
events. This should make early clip events inherently easier to detect.

As both the recurrent and non-recurrent models exhibit similar improvement for
early clip events, it can be assumed that early events are easier to detect. However,

35

5.2. DETECTOR EVALUATION

at the same time, no conclusive evidence can be found to support the hypothesis
that the recurrent model requires initial startup input.

Model Early Late Total

Static 75.23 67.80 68.65
LSTM 79.21 71.84 72.69

Table 5.5: Recall (%) comparison tables of the recurrent and non recurrent model
for detecting events at different time points.

5.2 Detector Evaluation

Following the initial tests to determine the model architecture, in this section, several
tests are summarized which evaluate the behavior of the final model. To begin with,
the performance of the model on an entire unseparated game is tested. Especially of
interest are long non-active play sequences and the model’s ability to detect these.
An overview of observations on several correctly incorrectly detected events is given
next. This is followed by a small section about inference speed of the model. Lastly,
the model’s capabilities of classifying events are analyzed.

5.2.1 Full Video Evaluation

On top of the evaluation of the clip dataset, the recurrent model is also evaluated
on the full video dataset. The full video gives insights on a model’s ability to detect
inactive play phases. Inactive play phases are longer sequences in which no events
occur, usually due to the ball leaving the area of play. These are frequently bridged
either by replays of the past action or close-ups of the bench to provide interesting
visual content for a viewer.

Replays are especially difficult to discern from normal play. Often, the only
visual distinction is an overlay faded in shortly before a replay, to cue the viewer that
the following scene is a replay. Moreover, the model may also struggle with close-up
shots. The clip dataset mostly eliminates these and the model, therefore, has limited
training experience. In summary, two possible scenarios were hypothesized. In any
case, a slight degradation in evaluation scores was expected due to the difficulty
of detecting replays as non-event sequences. In the first case, only a slight loss in
performance occurs. Because the model is unable to detect interactions between a
player and ball during close up filler shots, it doesn’t detect these frames as events. A
second plausible possibility is that the model outputs close to random probabilities
and a major loss in evaluation performance can be recorded.

36

5.2. DETECTOR EVALUATION

In general, the evaluation scores (Table 5.6) support the latter hypothesis. The
per-frame accuracy, F1 and MCC scores drop considerably more than is to be ex-
pected. While the random baseline gains in accuracy, stays stable in MCC and
drops by about 53% in the F1 score, the model performance drops by about 18%,
45% and 47% in accuracy, F1 score and MCC respectively. The accuracy shows
that the model does not adapt to the more imbalanced ratio of event and non-event
frames in the full video dataset. The random baseline predicts fewer event frames
because of a higher event sparsity and in turn scores a higher accuracy. In contrast,
the model predicts events with the same distribution on a full video as on a video
clip. Too many events are predicted in non-active phases and the accuracy scores
drop accordingly.

The same conclusions can be drawn from the F1 score. The random baseline
adapts its prediction probabilities and predicts less positive events. As a conse-
quence, both the precision and recall drop and the F1 score drops drastically. The
model, in contrast, does not change the positive event distribution. As a result,
the precision stays the same while the recall suffers from a higher amount of false
negative samples. This leads to a less dramatic drop in the F1 score. In summary,
the model classifies more non-event frames as events than the random baseline when
transitioning from clips to full videos. The MCC further supports the hypothesis.
It drops by almost half, showing that the model classifies with greatly increased
randomness.

The per-event metrics paint a similar picture. The model scores worse in both
recall and specificity and logically also in the harmonic mean. Surprisingly, the
performance difference is a lot smaller than the difference in per frame evaluation
scores would suggest. This is most likely due to the length of the non-event frame
windows which were removed in the video clip dataset. Even though the number of
frames more than doubled from 455,146 to 1,053,192 from the video clip to the full
video test dataset, the number of positive and negative event frame sequences only
increased from 21517 and 16129 to 22169 and 18048 respectively.

The sequences removed from the video dataset are most often very long frame

Per Frame Per Event

Data Set Model Rec F1 MCC Rec Spec µH

Baseline
Clip 55.78 32.28 -00.34 24.01 52.30 32.91
Full 74.43 15.00 -00.04 10.71 80.08 18.89

LSTM
Clip 61.41 58.28 29.20 72.69 40.92 52.36
Full 50.62 31.84 15.56 69.66 40.69 51.37

Table 5.6: Comparison table of per frame and per event evaluation scores (%) from
the full video and video clip dataset.

37

5.2. DETECTOR EVALUATION

sequences without events, which are grouped for the event-based evaluation. Even
though these sequences are often classified incorrectly, they only have a marginal
impact on the event evaluation scores because of the event frame grouping.

5.2.2 Manual Event Detection Evaluation

Many interesting soccer event properties are not directly inferable from the event
chains. These include properties like close-up shots, ball occlusion by players or
speed of play. Therefore, it is necessary to manually examine some examples of
correctly and incorrectly detected event and non-event frame sequences to analyze
model behavior for these kinds of scenes. By computing the MCC score per video
clip, event chains that are detected especially poorly or well can be investigated.
Also of interest are long non-event frame sequences, which can be filtered out by
taking the frames from the full video dataset not contained in the video clip dataset.

The successfully detected event chains show that the model is especially good
at detecting clearly separated events. That is events where a player receives a ball
and directly emits it again into another direction, without any opponent interference.
This kind of behavior is often found when a team keeps possession of the ball through
long pass chains. The model’s predicted event frame window if often offset by one
or two frames, but covers the bulk of the target event frame window.

In contrast to this, the model exhibits problems for chaotic play phases, where
multiple players are close to the ball and the ball trajectory is fast and unpredictable.
It also has difficulties predicting the event frame window when a stationary player
is in possession of the ball, i.e. the ball is kept close at a players’ feet but doesn’t
move. Lastly, the model also struggles with events where the ball is either occluded
or difficult to detect. This is frequently the case when the ball is struck high and
blends in with the stands or a player is positioned between the camera and the ball.
In all of these cases, the model predicts nearly every frame to contain an event.
This intuitively makes sense for chaotic play phases or stationary possessions, as it
is extremely difficult to predict when a player will touch the ball and the F1 loss
biases the model for the positive class. The occluded ball examples show this bias
carries over to when the model receives familiar input images but has to make a
completely uninformed decision.

Many examples of unfamiliar frame sequences can be found when taking a look
at long non-event frame sequences. These often contain close up filler shots the
model did not see during training. In many of these shots, no clear pattern for
the event predictions can be found. This is especially prevalent for shots where no
players or the ball are displayed, for example, if the bench or stands are highlighted.
This supports the hypothesis from the full video evaluation that the model outputs
random probabilities for unfamiliar input.

It should be noted that this deficit does not translate to all close-up shots though.

38

5.2. DETECTOR EVALUATION

Often, if the action is on the far side of the field, a close-up shot is used to highlight
the action. In most of these close up shots, the model shows no problems detecting
the event frame window correctly. As a result, no conclusive evidence for any camera
angle bias of the model could be found.

5.2.3 Speed

It is important to consider inference speed when evaluating the viability of a model
for real-world applications. Different tasks set different requirements regarding in-
ference speed. For example, online video processing will need to be able to run in
real-time, so usually around 25 to 30 frames per second. Offline processing usually
loosens the speed requirement and a model has more time to evaluate an entire
video.

The proposed architecture in this thesis is extremely lightweight. It can process a
single video at 116 frames per second on an NVIDIA Geforce GTX 1080Ti. Through
parallelization, this can be further increased. Processing all 12 test videos in parallel
pushes the frames per second to around 226. Depending on the scenario, this leaves
lots of headroom for further developments and improvements, while still enabling
real-time execution.

5.2.4 Classification

As a final test, the model’s capability for classifying events is evaluated. To enable
classification, the detector output layer is expanded to output a prediction value
for each event type. Two different models are trained, both using the recurrent
network architecture without attention. One model uses pretrained weights from
the detection model and the other model is trained completely from scratch. Both
models are compared to one another and a random baseline classifier. The random
classification is generated identically to the way described in Section 5.1, except also
expanded to the 17 event types. Table 5.7 reports all per frame evaluation scores.
The number of frames tagged for each event type is also reported for context.

One clear trend is immediately evident. The models struggle to classify rare
event types. That is, event types with comparably low frame counts also have, in
general, low evaluation scores. This is to be expected for the F1 score. A higher ratio
of positive samples automatically leads to higher precision and as a consequence a
higher F1 score. The MCC, on the other hand, weights positive and negative samples
identically and is therefore unaffected by the positive-negative ratio.

This effect may trace back to the F1 loss function used in training the classifier.
If a batch contains no positive samples for an event type, the gradient of the F1
loss is equal to 0. The probability of such an invalid batch rises with the imbal-
ance of positive and negative examples. For the extremely rare event types most

39

5.2. DETECTOR EVALUATION

F1 MCC
Event Type Pre New Base Pre New Base Count

Aerial Duel 03.33 03.83 00.66 03.24 03.43 00.00 2958
Clearance 08.35 06.81 01.24 07.76 05.72 00.15 4896
Completion 24.82 21.80 09.02 18.39 13.72 -00.11 42469
Contested Ball 00.60 00.46 00.15 01.03 00.47 00.01 765
Control 05.11 03.01 02.71 04.17 02.39 -00.06 12843
Deflection 06.36 05.11 01.60 05.23 03.88 00.48 5142
Goalkeeper Kick 00.02 00.01 00.00 00.05 -00.05 -00.01 42
Goalkeeper Throw 02.27 00.09 00.00 05.32 -00.28 -00.09 405
Interception 03.16 02.09 00.33 04.17 01.87 -00.15 2156
Kick-Off 00.59 00.64 00.00 01.58 01.25 -00.05 224
Pass 27.34 24.26 14.29 11.75 08.17 -00.02 67387
Recovery 04.91 04.44 01.55 03.05 02.51 00.00 7132
Set Piece 24.70 25.63 01.63 25.61 24.87 00.67 4564
Shield 01.00 01.36 00.50 01.20 02.21 00.24 1188
Shot 07.41 05.75 00.00 09.19 06.30 -00.40 1863
Tackle 03.30 03.79 00.97 02.46 02.96 00.13 3745
Take-On 04.27 03.72 01.23 03.22 02.65 00.29 4324

Table 5.7: Per frame F1 and MCC scores (%) for a model using pretrained weights
(Pre), a model trained from scratch (New) and a random baseline (Base). The
number of event frames per event class are given for context.

batches, therefore, do not lead to any updates of the respective output neuron. To
obtain better output predictions, the batch size would need to be increased to obtain
batches which are less likely to be invalid and also better approximate the true F1
loss on the entire dataset.

Another obvious effect is that transfer learning from the detection model leads
to performance improvements. In most evaluation scores, the model using the pre-
trained weights scores considerably higher than the model trained from scratch.
When the non-pretrained model has an advantage, it is usually in rare event cat-
egories where both models score poorly. Compared to a random classifier, both
models can achieve significantly better scores on most event types. While the ran-
dom classifier’s MCC ranges between 0.47% and -0.60% for event types with more
than 1000 frames, the scores for the pretrained model always lie above 1% with a
maximum of 29.06%. The model is, therefore, able to learn some kind of represen-
tation for every event.

A couple of event types deserve a detailed look. For example, set pieces constitute
a very interesting outlier. With only 4564 event frames, it is a fairly uncommon event
but is still detected extremely well compared to other event types. This is especially

40

5.2. DETECTOR EVALUATION

apparent when looking at the MCC score. The pretrained model has a 62% better
MCC score for set-pieces than for any other event type. For the model trained from
scratch, the difference is even more extreme at close to 100%. This is most likely
because close to all set piece events (99%) are the first events of the video clip they
appear in. Considering this, the improved set piece detection is consistent with the
results of the early clip event evaluation.

Another interesting event type is the goalkeeper throw. It is an extremely rare
event type, with only 405 total event frames in the video clip test dataset. However,
the detection scores for the pretrained model for this event type are higher than
many event types with significantly higher event frame counts. Because of the low
sample size, this result has to be taken with a grain of salt. Nonetheless, the result
is noteworthy because next to a throw-in, the goalkeeper throw is the only event
type executed with the hands. This result may suggest the model can discriminate
between which body part is used in which event.

Lastly, shots are again detected comparatively well considering the frame event
counts. The unique properties separating shots from other events are on the one
hand the location and on the other, the direction the ball is played. That is the
location is in the opponent’s box and the direction is towards the opponent’s goal.
As a consequence, the increased detection scores imply that the model has not only
learned to detect player and ball relations, but also the position of the ball relative
to the field and especially the goal.

41

5.2. DETECTOR EVALUATION

42

6 Discussion & Future Outlook

In summary, the evaluations of the different models give rise to several conclusions
and also further questions. The progressive model development yielded some in-
sightful results. In detail, the pre-processing methods showed that it was best to
leave image feature extraction to the convolutional neural network. It is exceedingly
difficult to create handcrafted methods that succeed at removing all irrelevant and
keeping all relevant information. Before important information is lost, it is better to
pass the entire image to the network and let it learn to extract the relevant features
itself.

The data imbalance sensitive loss functions showed that major improvements
can be achieved by attending to imbalanced data correctly. Both the F1 and MCC
loss were able to improve on the commonly used wBCE, making them both viable
alternatives for imbalanced data. However, the criticism voiced against the F1 score
also translates to the F1 loss. It has an inherent bias for the positive class, which
reflects itself in high positive classification ratios when a classifier is uninformed.
For tasks in which correct negative classifications are also of importance, the MCC
loss provides a more balanced metric. A downside of both loss functions is the intra-
batch dependency. When the data imbalance becomes too extreme or batch sizes
are too small, the intra-batch dependency can lead to invalid batches. If a batch
contains no positive or negative samples, the F1 and MCC losses are undefined
because of a division by 0. This may be the cause of the low detection rate for rare
event types in the event classification. Nonetheless, both loss functions show great
promise in providing an out the box solution for many tasks with imbalanced data.

The final progressive experiment, which examined the effect of different additions
to the neural network architecture, resulted in more open questions than originally
posed. The attention augmentation was unable to learn to produce any meaningful
features. Several reasons may be the actual cause of this issue. First and foremost,
because the attention augmentation convolution is relatively new, no out of the box
implementation for the pytorch framework could be found. The original publication
does provide a comprehensive overview of the algorithm for the tensorflow frame-
work, potential errors when converting the code into pytorch cannot be ruled out
though.

Otherwise, the necessity to train the attention augmented block from scratch may
also have lead to the performance loss. As the classification experiments showed,
pretraining a model on a related task can provide large performance improvements.

43

However, the minor loss in performance shows the half of the channels without at-
tention augmentation did manage to learn adequate weights. It is therefore deemed
unlikely that this is the cause for the near constant output of the attention aug-
mented channels.

Even though also unlikely, applying the attention augmentation only to the fi-
nal block of the ResNet may also have hindered the network in learning a good
attentional representation. Despite the layers being independent of one another, it
may be necessary to generate attention based features in early layers for the later
attention augmented layers to work at all. Finally, it may also be the case that the
specific subtask of detecting player-ball interaction events is not suited for attention
augmentation.

In the end, any, all or even none of the aforementioned reasons may be the true
cause of why the attention augmentation was unable to provide any additional value.
The attention augmentation implementation should have certainly been verified be-
forehand. The pragmatic approach would have been to reproduce the results from
the original paper, thereby ruling out any issues with the implementation. The pre-
trained weights could then have been applied to the task in this thesis. Nonetheless,
the non-result was included for completeness and as motivation for further research.

The temporalization of the spatial features also deserves a closer look. As already
mentioned in Section 4.1.3, alternative architectures exist which have shown better
performance in video action classification tasks. However, these architectures are
unsuitable for long video clips. Instead, a split spatial and temporal processing via
a ResNet and LSTM network was used. Even though adding the recurrence did
improve performance, the improvement was smaller than expected. First of all, a
recurrent model should be able to better take advantage of the event frame window
structure. A positively tagged frame is always neighbored by at least one other
positive frame. A non-recurrent model is unaware of this structure as it is unaware
of neighboring frames. The recurrent model, on the other hand, has information
on preceding frames and can factor classifications from preceding frames into its
decision process.

Additionally, the temporalization of spatial features should allow for the detec-
tion of movement. Admittedly, to detect player-ball relations, predominantly, good
spatial features are required. Nonetheless, being able to determine the direction and
velocity of player extremities and the ball should aid in predicting the onset and
end of an event frame window.

Most likely, the 2048 dimensional LSTM layer is far from complex enough to
obtain a robust representation of detailed movement within a video though. A more
sophisticated architecture working on a larger range of features may be necessary.
The main challenge is how to efficiently extract continuous movement features, with-
out having to do expensive redundant computations. Continuous in the sense that
frames are iteratively given as input, such that the system is not constrained by

44

video length. Avoiding redundant computations means every frame should ideally
be processed only once. This would exclude approaches like applying 3D convolu-
tional networks to iteratively shifted frame stacks. Developing such an architecture
remains an open research question.

A further reason why the recurrence only produced marginal performance im-
provements may be the actual task definition. The model is tasked to predict the
eventedness for each frame, without any knowledge of succeeding frames. Because of
the event frame window, multiple frames before the actual event are already tagged
as containing an event. In consequence, a model has to predict the eventedness of
a frame before the event has occurred. In essence, for frames before an event, the
detection task turns into a prediction task. When viewing examples of misclassified
events, a considerable number of examples were found where the model detected the
event onset a couple of frames too late. In many of these examples, the ball moved
extremely fast are was unexpectedly deflected. Hence, the prediction of the event
onset was especially difficult.

As a solution, the event frame window could be shortened to only include frames
following the event. This would not account for an occasionally misplaced timestamp
though. Instead, allowing the model to have access to several preceding frames is a
more elegant solution. In other words, the model should detect the eventedness of a
frame several frames in the past. Thereby, the model would have the full sequence
of event frames at its disposal.

In conclusion, the proposed model shows that the detection of detailed soccer
events is possible. A model working solely on spatial features already of frames cre-
ates a solid baseline. Expanding these to spatiotemporal features leads to conclusive
performance improvements. However, if adding visual attention helps in detecting
events in videos could not be answered in the scope of this thesis.

45

46

7 Conclusion

To conclude, the goal of this thesis was to create a neural network architecture that
can detect soccer events continuously solely from a soccer broadcast video. A vari-
ety of preprocessing methods, loss functions and neural network architectures were
tested. In the end, a recurrent model extracting spatiotemporal features achieves
the best results. Frame and event-based evaluations show that the proposed model
can identify a significant portion of events from the test dataset. Even though the
model struggles in scenes in which the ball is occluded or difficult to detect, it is
able to show the potential of automatic continuous event detection systems.

Several directions for future research exists. For the proposed model specifically,
increasing the video resolution and granting the model access to future frames may
already lead to performance improvements. For continuous video processing using
artificial neural networks in general, a closer investigation into the effects of visual
attention is sensible. Furthermore, a richer spatiotemporal feature space is desirable.
Instead of temporalizing high-level spatial features, spatiotemporal features need to
be extracted at much finer detail to improve their informational value. How to do
this efficiently and effectively, however, remains an open question.

After an extensive search, this work seems to be the first in continuous frame-
based event detection using neural networks. Most previous work on neural network
aided video processing focused solely on video-based labels. Only a small portion
implemented models to localize events. However, none could be found that operated
on arbitrary length videos and number of events. Lightweight but capable video
processing pipelines are especially useful for real-time detection and should therefore
not be neglected.

On top of this, this thesis is considered to make a couple of other noteworthy
contributions. First of all, the MCC loss is shown to be a viable loss function
for training neural networks on imbalanced data. It fills the role of an unbiased
alternative to the previously proposed F1 loss function. Next, visual attention is
applied in a neural network video processing framework. However, none of the
evaluation measures were able to produce conclusive evidence that visual attention
has a positive effect on video event detection.

Finally, it has shown that soccer event detection poses a challenging and diverse
subtask in the class of video event detection. Applying relatively straightforward
pretrained neural network models leads to adequate benchmark results. Improving
on this benchmark is far from trivial though, requiring the integration of spatiotem-

47

poral features into a unified framework. At the same time, the clearly defined events
and visual consistency of soccer videos make it easy to diagnose the behavior of neu-
ral network models. Soccer event detection could hence act as a superb test bed for
advancing research in neural networks for video processing.

48

Bibliography

[1] Sami Abu-El-Haija et al. “Youtube-8m: A large-scale video classification
benchmark”. In: arXiv preprint arXiv:1609.08675 (2016).

[2] Yuri Sousa Aurelio et al. “Learning from imbalanced data sets with weighted
cross-entropy function”. In: Neural Processing Letters 50.2 (2019), pp. 1937–
1949.

[3] Moez Baccouche et al. “Action classification in soccer videos with long short-
term memory recurrent neural networks”. In: International Conference on Ar-
tificial Neural Networks. Springer. 2010, pp. 154–159.

[4] Nicolas Ballas et al. “Delving deeper into convolutional networks for learning
video representations”. In: arXiv preprint arXiv:1511.06432 (2015).

[5] Michael Beetz et al. “Visually tracking football games based on TV broad-
casts”. In: Proceedings of the International Joint Conference on Artificial In-
telligence (IJCAI). 2007.

[6] Irwan Bello et al. “Attention augmented convolutional networks”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 3286–3295.

[7] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new
model and the kinetics dataset”. In: proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 6299–6308.

[8] Liang-Chieh Chen et al. “Encoder-decoder with atrous separable convolution
for semantic image segmentation”. In: Proceedings of the European conference
on computer vision (ECCV). 2018, pp. 801–818.

[9] Min Chen, Chengcui Zhang, and Shu-Ching Chen. “Semantic event extraction
using neural network ensembles”. In: International Conference on Semantic
Computing (ICSC 2007). IEEE. 2007, pp. 575–580.

[10] Rewon Child et al. “Generating long sequences with sparse transformers”. In:
arXiv preprint arXiv:1904.10509 (2019).

[11] Anthony Cioppa, Adrien Deliège, and Marc Van Droogenbroeck. “A bottom-
up approach based on semantics for the interpretation of the main camera
stream in soccer games”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 2018, pp. 1765–1774.

49

BIBLIOGRAPHY

[12] Anthony Cioppa et al. “A Context-Aware Loss Function for Action Spotting
in Soccer Videos”. In: arXiv preprint arXiv:1912.01326 (2019).

[13] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[14] Shaza M Abd Elrahman and Ajith Abraham. “A review of class imbalance
problem”. In: Journal of Network and Innovative Computing 1.2013 (2013),
pp. 332–340.

[15] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. “A multiple resam-
pling method for learning from imbalanced datasets”. In: Computational in-
telligence 20.1 (2004), pp. 18–36.

[16] Bernard Ghanem Fabian Caba Heilbron Victor Escorcia and Juan Carlos
Niebles. “ActivityNet: A Large-Scale Video Benchmark for Human Activity
Understanding”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 961–970.

[17] William Falcon et al. PyTorch Lightning. 2019. url: https://github.com/
PytorchLightning/pytorch-lightning.

[18] Christoph Feichtenhofer et al. “Slowfast networks for video recognition”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2019,
pp. 6202–6211.

[19] Silvio Giancola et al. “Soccernet: A scalable dataset for action spotting in
soccer videos”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. 2018, pp. 1711–1721.

[20] matchmetrics GmbH. 2020. url: https://www.matchmetrics.com.

[21] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[22] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 2961–2969.

[23] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[24] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 7132–7141.

[25] Haroon Idrees et al. “The THUMOS challenge on action recognition for videos
“in the wild””. In: Computer Vision and Image Understanding 155 (2017),
pp. 1–23.

50

https://github.com/PytorchLightning/pytorch-lightning
https://github.com/PytorchLightning/pytorch-lightning
https://www.matchmetrics.com

BIBLIOGRAPHY

[26] Tomoki Imai et al. “Play recognition using soccer tracking data based on ma-
chine learning”. In: International Conference on Network-Based Information
Systems. Springer. 2018, pp. 875–884.

[27] Xu Jia et al. “Dynamic filter networks”. In: Advances in Neural Information
Processing Systems. 2016, pp. 667–675.

[28] Rafal Kapela et al. “Real-time event detection in field sport videos”. In: Com-
puter vision in Sports. Springer, 2014, pp. 293–316.

[29] Andrej Karpathy et al. “Large-scale video classification with convolutional
neural networks”. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. 2014, pp. 1725–1732.

[30] Will Kay et al. “The kinetics human action video dataset”. In: arXiv preprint
arXiv:1705.06950 (2017).

[31] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems. 2012, pp. 1097–1105.

[33] Hildegard Kuehne et al. “HMDB: a large video database for human motion
recognition”. In: 2011 International Conference on Computer Vision. IEEE.
2011, pp. 2556–2563.

[34] Xiaokun Li and Fatih Murat Porikli. “A hidden Markov model framework for
traffic event detection using video features”. In: 2004 International Conference
on Image Processing, 2004. ICIP’04. Vol. 5. IEEE. 2004, pp. 2901–2904.

[35] Tianwei Lin et al. “BMN: Boundary-matching network for temporal action
proposal generation”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 3889–3898.

[36] Tianwei Lin et al. “BSN: Boundary sensitive network for temporal action
proposal generation”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 3–19.

[37] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Euro-
pean conference on computer vision. Springer. 2014, pp. 740–755.

[38] M Manafifard, Hamid Ebadi, and H Abrishami Moghaddam. “A survey on
player tracking in soccer videos”. In: Computer Vision and Image Under-
standing 159 (2017), pp. 19–46.

[39] Brian W Matthews. “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme”. In: Biochimica et Biophysica Acta (BBA)-
Protein Structure 405.2 (1975), pp. 442–451.

51

BIBLIOGRAPHY

[40] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE
Transactions on knowledge and data engineering 22.10 (2009), pp. 1345–1359.

[41] Joan Pastor-Pellicer et al. “F-measure as the error function to train neural
networks”. In: International Work-Conference on Artificial Neural Networks.
Springer. 2013, pp. 376–384.

[42] Adam Paszke et al. “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems.
2019, pp. 8024–8035.

[43] David Martin Powers. “Evaluation: From precision, recall and f-measure to
roc., informedness, markedness & correlation”. In: Journal of Machine Learn-
ing Technologies 2.1 (2011), pp. 37–63.

[44] K Pradeep. “Significant event detection in sports video using audio cues”. In:
International Journal of Innovations in Engineering and Technology (IJIET)
3.1 (2013), pp. 144–151.

[45] Zhuwei Qin et al. “How convolutional neural network see the world-A survey
of convolutional neural network visualization methods”. In: arXiv preprint
arXiv:1804.11191 (2018).

[46] Houari Sabirin, Hiroshi Sankoh, and Sei Naito. “Automatic Soccer Player
Tracking in Single Camera with Robust Occlusion Handling Using Attribute
Matching”. In: IEICE Transactions on Information and Systems 98.8 (2015),
pp. 1580–1588.

[47] Saikat Sarkar, Amlan Chakrabarti, and Dipti Prasad Mukherjee. “Generation
of Ball Possession Statistics in Soccer using Minimum-Cost Flow Network”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops. 2019.

[48] Yongduek Seo et al. “Where are the ball and players? Soccer game analysis
with color-based tracking and image mosaick”. In: International Conference
on Image Analysis and Processing. Springer. 1997, pp. 196–203.

[49] Gunnar A Sigurdsson et al. “Hollywood in homes: Crowdsourcing data col-
lection for activity understanding”. In: European Conference on Computer
Vision. Springer. 2016, pp. 510–526.

[50] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional networks
for action recognition in videos”. In: Advances in neural information processing
systems. 2014, pp. 568–576.

[51] Bharat Singh et al. “A multi-stream bi-directional recurrent neural network
for fine-grained action detection”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 1961–1970.

52

BIBLIOGRAPHY

[52] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A
dataset of 101 human actions classes from videos in the wild”. In: arXiv
preprint arXiv:1212.0402 (2012).

[53] Manuel Stein et al. “From Movement to Events: Improving Soccer Match
Annotations”. In: International Conference on Multimedia Modeling. Springer.
2019, pp. 130–142.

[54] Ying-li Tian et al. “Event detection, query, and retrieval for video surveil-
lance”. In: Artificial intelligence for maximizing content based image retrieval.
IGI Global, 2009, pp. 342–370.

[55] Du Tran et al. “Learning spatiotemporal features with 3d convolutional net-
works”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 4489–4497.

[56] Grigorios Tsagkatakis, Mustafa Jaber, and Panagiotis Tsakalides. “Goal!!
event detection in sports video”. In: Electronic Imaging 2017.16 (2017), pp. 15–
20.

[57] Takamasa Tsunoda et al. “Football action recognition using hierarchical
LSTM”. In: Proceedings of the IEEE conference on computer vision and pat-
tern recognition workshops. 2017, pp. 99–107.

[58] Noor Ul Huda et al. “Estimating the number of soccer players using simulation-
based occlusion handling”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops. 2018, pp. 1824–1833.

[59] J Leon V. (https://tex.stackexchange.com/users/154390/j-leon v). How do
I draw an LSTM cell in Tikz? Tex Stack Exchange. url: https://tex.

stackexchange.com/q/432312.

[60] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems. 2017, pp. 5998–6008.

[61] Limin Wang et al. “Temporal segment networks for action recognition in
videos”. In: IEEE transactions on pattern analysis and machine intelligence
41.11 (2018), pp. 2740–2755.

[62] Shoujin Wang et al. “Training deep neural networks on imbalanced datasets”.
In: 2016 international joint conference on neural networks (IJCNN). IEEE.
2016, pp. 4368–4374.

[63] Zhou Wang et al. “Image quality assessment: from error visibility to structural
similarity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–
612.

[64] Qizhe Xie et al. “Self-training with Noisy Student improves ImageNet classi-
fication”. In: arXiv preprint arXiv:1911.04252 (2019).

53

https://tex.stackexchange.com/q/432312
https://tex.stackexchange.com/q/432312

BIBLIOGRAPHY

[65] Yuanjun Xiong et al. “A pursuit of temporal accuracy in general activity
detection”. In: arXiv preprint arXiv:1703.02716 (2017).

[66] Huijuan Xu et al. “Joint event detection and description in continuous video
streams”. In: 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE. 2019, pp. 396–405.

[67] Ho-Sub Yoon, Young-lae J Bae, and Young-kyu Yang. “A soccer image se-
quence mosaicking and analysis method using line and advertisement board
detection”. In: ETRI journal 24.6 (2002), pp. 443–454.

[68] Guangyu Zhu et al. “Automatic multi-player detection and tracking in broad-
cast sports video using support vector machine and particle filter”. In:
2006 IEEE International Conference on Multimedia and Expo. IEEE. 2006,
pp. 1629–1632.

54

Eigentsändigkeitserklärung

Ferdinand Schlatt

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbstständig ver-
fasst und gelieferte Datensätze, Zeichnungen, Skizzen und graphische Darstellun-
gen selbstständig erstellt habe. Ich habe keine anderen Quellen als die angegebenen
benutzt und habe die Stellen der Arbeit, die anderen Werken entnommen sind -
einschließlich verwendeter Tabellen und Abbildungen - in jedem Fall unter Angabe
der Quelle als Entlehnung kenntlich gemacht.

Bielefeld, den 11. Mai 2021
Unterschrift

	Introduction
	Related Work
	Soccer Visual Analysis & Event Detection
	Neural Network Action Classification
	Neural Network Event Detection
	Neural Network Visual Attention

	Data
	Videos
	Events
	Data Imbalance

	Methodology
	Frame Processing
	ResNet
	Attention Augmented Convolution
	Recurrence

	Detector
	Preprocessing
	Loss Function
	Weighted Binary Cross Entropy
	F1 Loss & MCC Loss
	Experiment Details & Hyperparameters

	Evaluation
	Model Comparisons
	Preprocessing
	Loss
	Model Architecture

	Detector Evaluation
	Full Video Evaluation
	Manual Event Detection Evaluation
	Speed
	Classification

	Discussion & Future Outlook
	Conclusion

