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ABSTRACT
Effective queries are crucial to minimising the time and cost of med-
ical systematic reviews, as all retrieved documents must be judged
for relevance. Boolean queries, developed by expert librarians, are
the standard for systematic reviews. They guarantee reproducible
and verifiable retrieval and more control than free-text queries.
However, the result sets of Boolean queries are unranked and diffi-
cult to control due to the strict Boolean operators. We address these
problems in a single unified retrieval model by formulating a class
of smooth operators that are compatible with and extend existing
Boolean operators. Our smooth operators overcome several short-
comings of previous extensions of the Boolean retrieval model. In
particular, our operators are independent of the underlying ranking
function, so that exact-match and large language model rankers can
be combined in the same query. We found that replacing Boolean
operators with equivalent or similar smooth operators often im-
proves the effectiveness of queries. Their properties make tuning a
query to precision or recall intuitive and allow greater control over
how documents are retrieved. This additional control leads to more
effective queries and reduces the cost of systematic reviews.

CCS CONCEPTS
• Information systems → Specialized information retrieval;
Query reformulation.

KEYWORDS
systematic reviews, Boolean queries, retrieval models
ACM Reference Format:
Harrisen Scells, Ferdinand Schlatt, and Martin Potthast. 2023. Smooth Op-
erators for Effective Systematic Review Queries. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3539618.3591768

1 INTRODUCTION
Developing effective queries to search the medical literature for sys-
tematic reviews takes a lot of time and effort. Systematic reviews in
medicine aim to comprehensively synthesise all relevant literature
on clearly defined research questions. Therefore, the query used to
search the literature must also be comprehensive. This requirement
has its price, because systematic reviews cost around 140,000 USD
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and take one to two years to complete [27]. Especially the screen-
ing phase is time-consuming [14]. It involves manually checking
documents (in this case, abstracts of medical articles) retrieved by a
Boolean query for relevance to the review.Most research in this area
focuses on methods that directly accelerate the screening phase; for
example, active learning [8, 29, 55], text mining [3, 10, 31, 50, 52],
and document ranking [20, 26, 54]. We take a new approach and de-
velop a method to directly improve the effectiveness of queries used
to search for the literature of systematic reviews. This approach
complements previous approaches in that a more effective query
retrieves fewer documents to review.

The Boolean retrieval model is a powerful tool for formulating
complex queries to retrieve relevant documents, but it has some
long-known shortcomings [39, 56]: (1) A lack of control over the
number of retrieved documents. Hence, finding a precise Boolean
query that retrieves a specific number of documents within a screen-
ing budget comes down to an expensive iterative trial and error
process [7]. (2) Retrieved documents are not ranked. This means
that all documents are equally important, and there is no way to re-
liably and automatically determine a cut-off for non-relevance [35].
(3) Boolean operator strictness leads to unexpected results. For
example, a document retrieved with one of four terms in an OR
subquery is as important as a document retrieved with all four
terms, while a document retrieved with three of four terms in an
AND subquery is not retrieved. Extensions addressing the problems
of the Boolean retrieval model [4, 40] have their own shortcomings
and do not take recent advances in information retrieval, such as
the use of large pre-trained language models, into account.

This paper proposes an extension to the Boolean retrieval model
called the smooth operator model, which addresses the three out-
lined shortcomings (Section 3): the ability to control to what extent
a document should be retrieved by a set of terms, the ability to rank
documents according to how likely they should be retrieved, and
the ability to express lenient or smooth Boolean operators. The
main intuition for the smooth operator model is that a document’s
relevance for one part of a query should depend on its other parts.
Our investigation into the model (Section 4) includes determining
the effectiveness of smooth operators in improving the recall and
precision of Boolean queries for systematic review literature search;
ascertaining that the integration of pre-trained language models en-
hances effectiveness; and examining the strengths and limitations
of smooth operators in different types of systematic reviews. The
main findings (Section 5) of the study are that the smooth operator
model has intuitive properties that enable optimisation of recall
or precision, but determining the appropriate degree of smooth-
ness is challenging. Despite this challenge, more effective queries
are possible when incorporating basic ranking models, which turn
out to be more effective and efficient than neural models based on
pre-trained language models.1,2

1Our runs are available to download at https://dx.doi.org/10.5281/zenodo.7870122
2Our code is available at https://github.com/webis-de/SIGIR-23
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2 BACKGROUND & RELATEDWORK
The smooth operators we introduce are based on principles from
two well-researched areas of information retrieval: the Boolean
retrieval model and its extensions, and rank fusion. Beyond that,
few attempts have been made to improve Boolean queries.

2.1 Basics of the Boolean Retrieval Model
Let 𝑇 = {𝑡1, . . . , 𝑡𝑚} denote a set of 𝑚 index terms, called termi-
nology, and 𝐷 = {𝑑1, . . . , 𝑑𝑛} denote a set of 𝑛 documents, called
document collection. Under the Boolean retrieval model, a real
document 𝑑 ∈ 𝐷 is represented as a subset of 𝑇 , i.e. 𝑑 ⊆ 𝑇 .

A Boolean query 𝑞 is a well-formed propositional formula in
which the terms 𝑇 are atoms and in which the operators AND, OR
and NOT are usually used. The query language, like the proposi-
tional calculus, is inductively defined by the following rules:

(1) Every index term 𝑡 ∈ 𝑇 is a query.
(2) If 𝑞 is a query, so is NOT 𝑞.
(3) If 𝑞1 and 𝑞2 are queries, so are (𝑞1 AND 𝑞2) and (𝑞1 OR 𝑞2).
(4) Only expressions formed by the Rules (1)-(3) are queries.

Let 𝑄 be the set of all queries that can be formulated in the query
language. Due to Rule (1), the terminology is a subset of all queries,
i.e. 𝑇 ⊂ 𝑄 . A well-formed Boolean query 𝑞 can be split into an
abstract syntax tree, where the nodes are operators and the leaves
are atoms (see Figure 1). Each subtree of the syntax tree of 𝑞 is also
a well-formed boolean query in 𝑄 , which we call subquery.

To determine whether a document 𝑑 ∈ 𝐷 is retrieved by a
query 𝑞 ∈ 𝑄 under the Boolean retrieval model, its retrieval status
value (RSV) is calculated [56]. This corresponds to determining
whether 𝑞 is satisfied by 𝑑 . For this purpose, the semantics of 𝑞 are
defined using an interpretation function I𝑑 : 𝑄 → {0, 1}, where 0
indicates that 𝑞 is false for 𝑑 and 1 that a query 𝑞 is true for 𝑑 . Given
the query language above, I is recursively defined as follows:

I𝑑 (𝑡) =

{
1 if 𝑡 ∈ 𝑑,

0 otherwise;

I𝑑 (NOT 𝑞) =

{
1 if I𝑑 (𝑞) = 0,
0 otherwise;

I𝑑 (𝑞1 AND 𝑞2) =

{
1 if I𝑑 (𝑞1) = I𝑑 (𝑞2) = 1,
0 otherwise;

I𝑑 (𝑞1 OR 𝑞2) =

{
1 if I𝑑 (𝑞1) = 1 or I𝑑 (𝑞2) = 1,
0 otherwise.

To retrieve the set of documents 𝐷𝑞 ⊆ 𝐷 for which a query 𝑞

is true, the RSV is calculated for each document in 𝐷 , which is
efficiently implemented using an inverted index of 𝐷 .

2.2 Extensions of the Boolean Retrieval Model
The Boolean retrieval model is strict in how it assigns an RSV to a
document. In particular, the AND operator has a strong influence.
For example, if all but one subquery 𝑞𝑖 of a query 𝑞 = 𝑞1 AND
𝑞2 AND . . . AND 𝑞𝑙 are true for a document 𝑑 , its RSV is 0. Con-
versely, the OR operator is often too broad and retrieves many more
documents than necessary.

AND

OR OR t6

t1 t3t2 t4 t5
Subquery

Atomic query

Root query

Figure 1: Boolean query syntax with annotated terminology.

To overcome such and similar limitations, many extensions to the
Boolean retrieval model have been proposed that allow better con-
trol over the set of retrieved documents 𝐷𝑞 . All extensions have in
common that they replace the binary membership of a document 𝑑
to the result set 𝐷𝑞 for a query 𝑞 by a gradual membership measure.
This is usually achievedwith a relevance function 𝜌 : 𝐷×𝑄 → [0, 1],
where 0 indicates no relevance and 1 maximum relevance.

Fuzzy set theory [62] has been extensively studied to express re-
lationships between continuous relevance functions, most notably
the fuzzy set retrieval model [5, 6]. The relationships between fuzzy
sets are expressed with operators that correspond to those of the
Boolean retrieval model, e.g. MIN andMAX instead of OR and AND,
respectively. Since the fuzzy retrieval model assigns a continuous
RSV to the documents, the total number of retrieved documents can
be controlled with the help of a threshold. However, the fuzzy re-
trieval model has a major weakness that makes it less practical than
the Boolean retrieval model. Under the original fuzzy set retrieval
model, documents retrieved from all but one subquery in an AND
expression are equivalent to documents retrieved from none, and
documents retrieved from one subquery in an OR expression are
equivalent to those retrieved from all subqueries. This weakness
was addressed in later research by termweighting [32, 56]; however,
the resulting operators have undesirable properties [36].

The extended Boolean model [39] is a generalisation of these
concepts. Its basis of the relevance function is the 𝐿𝑝 vector norm.
Queries and documents are represented as vectors in an𝑛-dimensional
vector space, where each dimension typically corresponds to an
index term, i.e. a controlled vocabulary of terms—an example in
systematic review literature search is the MeSH vocabulary [23, 30].
A parameter between 1 and infinity controls the retrieval of docu-
ments. As it decreases, retrieval becomes an inner product between
the query and document. As it approaches infinity, retrieval be-
comes equivalent to either the fuzzy-set or strict Boolean models,
depending on how terms are represented (i.e., weighted or binary).
However, while non-binary term weights can lead to more effective
retrieval, choosing term weights is a complex problem, and man-
ually assigning term weights can have undesirable or unintuitive
effects on the result set of queries [51].

Many issues with extensions to the Boolean retrieval model arise
from properties relating to term weighting. Rather than investi-
gating more effective term weighting schemes, we take a different
approach to relaxing Boolean operators. We estimate how likely
a document is to a query indirectly using the output of a ranking
function such as BM25 or a neural ranking function. This separation
allows intermixing multiple ranking functions in a Boolean query.
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2.3 Rank Fusion
The goal of rank fusion is to combine the result lists from multiple
systems or queries into a single ranked list [49]. Rank fusion is
a well-studied area of information retrieval and is well-known to
improve ranking effectiveness. There are two main categories of
rank fusion algorithms [16]: score-based [49] and rank-based [25].

Score-based rank fusion algorithms depend on the relevance
scores ascribed to documents by the retrieval model or system. Nat-
urally, scores must be normalised before applying a score-based
rank fusion algorithm. The fused list is also heavily dependent on
the score distributions of documents. Rank-based rank fusion algo-
rithms instead directly depend on the rank positions of documents
within each ranking, ignoring the score. These algorithms do not
require any normalisation. Given the dependency of score-based
rank fusion algorithms on document scores, we focus our atten-
tion on rank-based algorithms in this work. The use of rank-based
fusion algorithms makes the document ranking of the smooth oper-
ator model independent of the underlying ranking model to score
documents retrieved by each atomic query.

2.4 Improving Boolean Queries
Improving the effectiveness of systematic review literature search
queries has been researched previously in several directions. Scells
et al. [44, 48] investigated an automatic method that made modi-
fications to queries such as the addition or removal of subqueries,
changes in Boolean operators, or changes to which fields queries are
restricted to searching. This method was shown to automatically
improve the effectiveness of queries for systematic review literature
search. However, the extent to which queries could be modified was
not controllable, nor was it clear how many modifications should
be made to a query before stopping. In other words, in practice,
users would have no control over how much their queries could
change. Pohl et al. [34] translated a small number of Boolean queries
for systematic review literature into the extended Boolean model.
However, they found that binary weights were more effective than
more complicated weighting schemes, suggesting that choosing
appropriate term weights is a challenging task, especially for the
complex queries used for systematic review literature search. Wang
et al. [57, 59] developed several methods for automatically sug-
gesting MeSH terms for queries. These methods can suggest more
effective MeSH terms for a query; however, the choice of the sugges-
tion method is critical to the effectiveness of the query. In practice,
there is no way to tell which MeSH suggestion method is the most
effective a priori. There has also been some prior research investi-
gating the automatic formulation of Boolean queries for different
contexts, such as for systematic review literature search [47] and
professional search [21]. Similar to the MeSH suggestion problem,
where a modification’s effect on a query is unknown, predicting
which terms to add or remove to a query is difficult and often re-
quires human expertise. The choice of terms can have a significant
impact on the effectiveness of a query. Our smooth operator model
has the advantage that queries can be broadened or restricted inde-
pendently of the terms chosen, meaning that the choice of terms is
less important for effective queries.

3 SMOOTH OPERATOR MODEL
There are two main components to the smooth operator model:
the first is a probabilistic model that predicts the likelihood that a
document is relevant to the children of a subquery; the second is a
rank fusion model to rank documents and prevent ties.

3.1 Calculating the RSV for a Document
The intuition for the smooth operator model is that, given a root
query 𝑞 or a subquery 𝑞𝑖 thereof, the RSV for a document 𝑑 depends
on the first-level children of𝑞 or𝑞𝑖 (see Figure 1). In other words, the
more children that retrieve a document and the higher a document
is ranked by each child, the more likely that document is relevant
to the (sub)query 𝑞. We model the RSV as a probability that the
children of a (sub)query retrieve a document. The RSV computed
by 𝜌 (𝑑, 𝑞) is the extent to which document 𝑑 should belong to a
(sub)query 𝑞:

𝜌 (𝑑, 𝑞) = 𝑃 (𝑑 |𝑞) = 𝑃 (𝑑)𝑃 (𝑞 |𝑑)
𝑃 (𝑞) ,

The final value of 𝜌 (𝑑, 𝑞) requires a recursive calculation for each
subquery in a query in a bottom-up fashion. As a subquery com-
prises child queries (i.e., atomic queries or further subqueries), the
probability of a document retrieved by a subquery necessarily de-
pends on its children 𝑞𝑖 ∈ 𝑞:

𝑃 (𝑑 |𝑞1, ..., 𝑞𝑘 ) =
𝑃 (𝑑)∏ 𝑃 (𝑞𝑖 |𝑑)

𝑃 (𝑑)∏ 𝑃 (𝑞𝑖 |𝑑) + 𝑃 (𝑑)∏ 𝑃 (𝑞𝑖 |𝑑)
,

where 𝑃 (𝑑) = 1 − 𝑃 (𝑑), and likewise for 𝑃 (𝑞 |𝑑).3 This leaves two
probability estimations: the prior probability 𝑃 (𝑑) and the con-
ditional probabilities 𝑃 (𝑞𝑖 |𝑑) for each child. Intuitively, 𝑃 (𝑑) can
be reasoned as the collective contribution of all children to the
document being retrieved. Meanwhile, 𝑃 (𝑞𝑖 |𝑑) can be reasoned as
the individual contribution by each child to the document being
retrieved. We estimate 𝑃 (𝑑) as the ratio of children that retrieve 𝑑 :

𝑃 (𝑑) =
|{∀𝑞𝑖 ∈ 𝑞 : 𝑑 ∈ 𝐷𝑞𝑖 }|

|𝑞 | ,

where 𝐷𝑞𝑖 are the documents retrieved by 𝑞𝑖 and |𝑞 | is the number
of children contained in 𝑞. This probability models the intuition
of coordination level matching [24], which assumes that the more
children retrieve a document, the more likely that document is rele-
vant. With this prior probability calculated, one now must calculate
the contribution from each child query for a document.

𝑃 (𝑞𝑖 |𝑑) is estimated as the relevance between 𝑞𝑖 and 𝑑 , i.e., us-
ing the intuition from the probability ranking theory [38], which
assumes that the higher ranked a document is in response to a
query, the more relevant it is. In other words, 𝑃 (𝑞𝑖 |𝑑) is the inverse
position that 𝑑 appears in a ranking for a child query 𝑞𝑖 :

𝑃 (𝑞𝑖 |𝑑) = 1 − 𝑝𝑜𝑠 (𝑞𝑖 , 𝑑)
|𝐷𝑞𝑖 |

,

where 𝑝𝑜𝑠 (𝑞𝑖 , 𝑑) is the rank position of 𝑑 in response to issuing 𝑞𝑖
to a retrieval system. If the child is an atomic query, documents can
be ranked by any retrieval model, e.g., BM25. If the child is another
subquery, the documents will already be ranked, as assigning RSVs
is bottom-up recursive.
3The Naive Bayes assumption shows that 𝑃 (𝑑 ) and 𝑃 (𝑞 |𝑑 ) are appropriately defined.
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Table 1: Equivalents to the Boolean operators as expressed in
the smooth operator model. Note that the NOT operator is
nested: the inner function is an exclusive OR, and the outer
function ANDs the result with the left-most query.

Boolean operator smooth Boolean equivalent

OR 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0)
AND 𝑓 (𝜌 (𝑑, 𝑞) = 1)
NOT 𝑓 (𝑓 (𝜌 (𝑑, 𝑞) < 1) = 1)

3.2 Defining Smooth Operators as RSV Cut-offs
Once all documents retrieved by the children of a subquery have
been assigned an RSV, the documents are ranked by their RSV.
Documents with a high RSV are more likely to be retrieved by all
children of a subquery than documents with a low RSV. A smooth
operator is a function that applies a cut-off, or threshold, to the
ranked list of documents. Formally, a smooth operator takes the
form 𝑓 (), which binarises the RSV from a continuous value into a 1
or a 0; e.g., 𝑓 (𝜌 (𝑑, 𝑞) > 𝜃 ), where 𝜃 is the desired RSV cut-off. The
result set can be manipulated depending on the comparator.

Onemain advantage of theway result sets are cut-off is that when
no cut-offs are applied, the smooth operator model is equivalent
in retrieval to the Boolean retrieval model. Table 1 shows how the
three Boolean operators OR, AND, and NOT can all be expressed
as equivalent smooth functions. Figure 2 provides a visual intuition
for how the smooth Boolean equivalent operators are smoothened
to control the result set size.

One limitation of the smooth operator model is that 𝑃 (𝑞 |𝑑) is
dependent on the rank position of 𝑑 . When 𝑃 (𝑞𝑖 |𝑑) = 1, the docu-
ment is in the first rank position. If all other children also retrieve
the document regardless of rank, the final RSV of this document
will be 1. As each child query is likely to have a different document
in the first-rank position, several documents can obtain the same
RSV. In other words, multiple documents will likely have a tied RSV.
Ties are not a problem for smoothing the result set size: intuitively,
two independent documents ranked in the first position by two sep-
arate child queries are equally important. However, problems arise
when inferring the rank positions for subqueries. A retrieval system
cannot directly rank documents for subqueries and ties arise from
the RSVs. We overcome these problems by independently ranking
documents using rank fusion.

3.3 Breaking Ties with Rank Fusion
Rather than relying on the RSV for ranking document, which is
highly likely to contain ties, we independently score documents
using rank fusion in a way that ensures ties are less likely. Scells et
al. [45] devised a ranking mechanism for Boolean queries, which
fused document rankings bottom-up through the query. Rather
than set-based retrieval, a rank-based retrieval model was applied
to each atomic query. During document scoring, document rankings
from each sub-query were fused to produce a single ranked list for
a Boolean subquery. In that work, different rank fusion algorithms
were applied depending on the Boolean operator, i.e., CombMNZ
for OR and CombSUM for AND. In our work, we use a single rank
fusion algorithm for ranking documents.

Boolean OR Boolean AND Boolean NOT

Smoothed OR Equivalent Smoothed AND Equivalent Smoothed NOT Equivalent

Figure 2: Boolean operators (above) and instantiations of
smoothed operators in the smooth operator model (bottom).
Note that the smooth NOT operator is a combination of two
operators: NOT+AND. This is also how the NOT operator is
expressed in Boolean queries (described in Table 1).

Wepropose amodification on the reciprocal rank fusion (RRF) [9]
algorithm, which we denote RRFMNZ. The original RRF algorithm
sums the reciprocal rank of a document among rankings, with some
additional smoothing factor. We additionally multiply this sum by
the number of rankings the document appears in:

𝑅𝑅𝐹𝑀𝑁𝑍 (𝑑 ∈ 𝐷) = |𝑑 ∈ 𝑅 | ·
∑︁
𝑟 ∈𝑅

1
𝑟 (𝑑) + 𝑘 ,

where 𝐷 is the set of documents to be ranked, 𝑅 are the rankings
to be fused, 𝑟 (𝑑) is the rank position of 𝑑 in 𝑟 , and 𝑘 is a smoothing
factor that mitigates high-ranking outlier documents. Intuitively,
RRFMNZ lessens the dark horse effect [53] (i.e., outlier documents
ranked highly by a single child query) and boosts the chorus ef-
fect [53] (i.e., documents retrieved by multiple children should be
ranked higher). Initial experiments found that higher values of 𝑘
are the most effective, so we set this parameter to 10,000.

4 EXPERIMENTAL SETUP
Test Collections. The primary objective of this research is to

improve the retrieval effectiveness of systematic review literature
search queries. Therefore, we use three information retrieval test
collections of systematic review topics. We use two test collections
from the CLEF Technology Assisted Reviews (TAR) track [17, 19].
These are referred to as the CLEF TAR 2017 and 2018 collections.We
only use the ‘testing’ portions of these collections for our evaluation.
We also use the seed study collection fromWang et al. [58]. We have
chosen these test collections as they contain systematic reviews of
different types and investigate the differences between them.

For our experiments, the queries must be executable in a retrieval
system. We do not simply re-rank sets of already retrieved docu-
ments. To obtain comparable results, all the queries must be in the
same format and executed within the same retrieval system. Since
certain documents only exist in certain literature databases, several
search engines are used in systematic review literature searches. For
example, queries in the CLEF TAR collections are either executable
in PubMed or Ovid. Both are proprietary search systems; however,
PubMed makes much of the data freely available. Therefore, we
convert all queries in the Ovid format into the PubMed format.
While this conversion may not be perfect (i.e., Ovid has some fields
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and operators that are not present in PubMed), this is what has
been done in the literature [46, 57]. The Wang et al. [58] collection
already contains queries specifically formulated for PubMed.

Training Collection. Our investigation includes training models
for predicting suitable 𝜃 values. As we wanted to use the same
classification model across all collections, we decided to use queries
from a dataset of query logs as training data [42]. This query log
contains approximately 6,000 queries, with a portion of the queries
also containing references to potentially relevant documents that
users self-defined to aid in the searching process. We filter these
queries to only those containing these self-defined documents in
PubMed format. The queries are also grouped into sessions, so to
ensure training diversity while utilising as much data as possible,
we use the first and last query in a session (so long as they are
different). This leaves 362 queries for training, far more than if we
were to perform, for example, leave one out cross-validation.

Retrieval Methods. The smooth operator model requires that doc-
uments retrieved by an atomic query are ranked. While the model
imposes no restrictions on the method used to rank documents,
we focus our efforts on two methods: BM25 and neural rankers
derived from large pre-trained language models. BM25 is also used
to retrieve an initial document ranking to be re-ranked by the neu-
ral rankers. The initial ranking for neural rankers uses the smooth
Boolean equivalents. We use pybool_ir [43] to index and search
the 2022 baseline PubMed collection. We use the default BM25
implementation in Lucene.

For neural re-ranking, we use a BERT-based cross-encoder archi-
tecture. The model receives a tokenised query and a document as
input and outputs a relevance score. It is trained to output higher
relevance scores for more relevant documents. This architecture
has achieved state-of-the-art effectiveness [15] on TripClick [37], a
medical document retrieval benchmark. The benchmark’s license
restricts the release of fine-tuned models. We, therefore, fine-tune
three models based on pre-trained PubMedBERT [13], BERT [12],
and DistilBERT [41] using the training triples released by Hofstätter
et al. [15]. We train the models for 150,000 steps using the AdamW
optimiser with a learning rate of 7 ·10−6 and batch size 16. We chose
PubMedBERT as it was pre-trained using medical terminology and
should have a good representation of documents in PubMed. BERT
and DistilBERT are used to compare model size and effectiveness.

During re-ranking, we opted to use the review title as the query
to the re-ranker for each atomic query rather than the atomic query
itself. These neural models may not be able to rank documents
effectively when most atomic queries consist of only a single term.
Additionally, only the top 100,000 documents for each atomic query
are re-ranked to save computing resources. The total number of
atomic queries that required re-ranking was 5,910.

Evaluation. Evaluation is performed using the documents in-
cluded in the systematic reviews. We measure the effectiveness of
our smooth operator model using recall, precision, and f-measure.
As the smooth operator model also ranks documents, we employ
recall@𝑘 and nDCG@𝑘 where 𝑘 ∈ {100, 1000}.

Comparing our method to other methods in the literature is
surprisingly difficult. Methods that automatically rewrite queries to
make them more effective [2, 44, 48] use public test collections but

have not shared their run files. In the CLEF TAR shared task, most
submissions took part in the screening task [17–19]. This task in-
volved re-ranking an already retrieved set of documents. It entirely
disregards our task at hand, the retrieval step. Only four partic-
ipants submitted entries to the retrieval subtask: AUTH, ECNU,
SHEF, and UW. We include their runs as comparison baselines. We
are unaware of other studies in the literature that perform tasks
similar to what we perform that have publicly available results (i.e.,
run files) that we can fairly compare.

5 RESULTS
The following research questions guide our investigation.
RQ1 How effective is the smooth operator model at improving the

effectiveness of existing systematic review literature search
Boolean queries?

RQ2 Can the use of large pre-trained language models in conjunc-
tion with smooth Boolean operators enhance the effective-
ness of systematic review literature search queries?

RQ3 How effective are smooth Boolean operators for systematic
review literature searches across different types of systematic
reviews, and what factors influence potential differences in
effectiveness?

The first research question investigates instantiations of the
smooth operators to determine if they can improve the retrieval
effectiveness of queries. The second research question investigates
use of neural rankers based on pre-trained language models to
determine whether they can further improve the retrieval effec-
tiveness of queries. The third research question investigates the
strengths and limitations of smooth operators on different types of
systematic reviews (i.e., intervention vs. diagnostic test accuracy).

5.1 Integration of Smooth Operators
We first investigate RQ1: How effective is the smooth operator model
at improving the effectiveness of existing systematic review literature
search Boolean queries? This research question is fundamentally
concerned with whether the smooth operators can be integrated
into existing query syntax for systematic review literature search
queries. We split the investigation into this research question into
three experiments: first, we perform an ablation study to understand
how smoothing each Boolean operator impacts retrieval effective-
ness; secondly we use an oracle to find appropriate 𝜃 parameters for
each individual operator in the query; finally, we attempt to predict
appropriate 𝜃 values. In the first experiment, we aim to understand
if queries can be made more effective by globally modifying the
smoothness of all operators of one type in a query. From a user per-
spective, this translates to a user that simply wants a more specific
or broad query without tuning each operator in the query. In the
second experiment, we aim to understand if queries can be made
even more effective by tuning the smoothness of the operators for
each subquery in the query. From a user perspective, this translates
to a user that wants to carefully control the size of their result set
without wanting to modify the syntactic or semantic properties of
the query. In the third experiment, we aim to understand if it is
possible to predict appropriate 𝜃 values. From a user perspective,
this translates to a user that is uninterested in carefully tuning their
query for effectiveness, but still desires a more effective query.
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Table 2: Results of the ablation study, oracle, predictor, and neural methods. For each collection, a two-sided t-test; 𝑝 < 0.05 with
Bonferroni correction was performed between each method and the ‘smooth Boolean equivalents’ from Table 1. Rows in grey
are runs from CLEF TAR 2018 that are not directly comparable to our results as they relied on explicit feedback mechanisms.

Recall R@100 R@1000 Precision 𝐹0.5 𝐹1 𝐹3 nDCG nDCG@100 nDCG@1000

W
an
g
et

al
.

Boolean operators 0.7149 - - 0.0362 0.0509 0.0642 0.1081 - - -
BM25 Title 0.7149 0.2082* 0.5325* 0.0362 0.0509 0.0642 0.1081 0.2605* 0.0972* 0.2071*
smooth Boolean equivalents 0.7149 0.3787 0.6681 0.0362 0.0509 0.0642 0.1081 0.3675 0.2486 0.3503
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.99) 0.7206 0.3472 0.6468 0.0019* 0.0029* 0.0038* 0.0075* 0.3595 0.2331 0.3357
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.9) 0.7658* 0.3238 0.5753 0.0002* 0.0002* 0.0003* 0.0006* 0.3552 0.2180 0.3055*
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.01) 0.3078* 0.2024* 0.2969* 0.0366 0.0484 0.0582 0.0861 0.1998* 0.1604* 0.1965*
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.1) 0.0612* 0.0562* 0.0599* 0.0486 0.0419 0.0417 0.0438* 0.0637* 0.0620* 0.0632*
Predictor 0.3876* 0.2315* 0.3764* 0.0364 0.0471 0.0566 0.0865 0.2189* 0.1651* 0.2150*
Oracle 0.7437 0.4084 0.6989 0.0440 0.0613* 0.0769* 0.1275* 0.4062* 0.2885* 0.3897*
PubmedBERT 0.7148 0.3577 0.6518 0.0363 0.0510 0.0643 0.1083 0.3524 0.2252 0.3310
BERT 0.7149 0.3684 0.6472 0.0363 0.0510 0.0644 0.1083 0.3694 0.2447 0.3477
DistilBERT 0.7118 0.3830 0.6628 0.0362 0.0508 0.0641 0.1078 0.3649 0.2449 0.3472

CL
EF

TA
R
20
17

Boolean operators 0.7521 - - 0.0157 0.0214 0.0264 0.0429 - - -
BM25 Title 0.7521 0.0239* 0.1268* 0.0157 0.0214 0.0264 0.0429 0.2261* 0.0224* 0.0629*
smooth Boolean equivalents 0.7521 0.2033 0.4747 0.0157 0.0214 0.0264 0.0429 0.3300 0.1296 0.2421
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.99) 0.7749 0.2069 0.4748 0.0020 0.0030 0.0040 0.0080 0.3366 0.1319 0.2440
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.9) 0.8332 0.2102 0.4867 0.0006 0.0009 0.0011 0.0023 0.3553 0.1344 0.2513
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.01) 0.4721* 0.1486 0.3284 0.0152 0.0205 0.0252 0.0403 0.2284* 0.1146 0.1877
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.1) 0.2223* 0.1181 0.1868 0.0191 0.0239 0.0284 0.0422 0.1248 0.0870 0.1146
Predictor 0.5106* 0.1461 0.3259 0.0107 0.0121 0.0137 0.0198 0.2410* 0.1146 0.1838
Oracle 0.7695 0.2167 0.4812 0.0091 0.0122 0.0149 0.0245 0.3394 0.1395 0.2490
PubmedBERT 0.7521 0.1834 0.4851 0.0157 0.0214 0.0264 0.0429 0.3243 0.1210 0.2369
BERT 0.7521 0.2151 0.5045 0.0157 0.0214 0.0264 0.0429 0.3326 0.1348 0.2511
DistilBERT 0.7514 0.1539 0.4617 0.0157 0.0214 0.0264 0.0429 0.3085 0.0980 0.2158

CL
EF

TA
R
20
18

Boolean operators 0.8344 - - 0.0204 0.0297 0.0385 0.0699 - - -
BM25 Title 0.8344 0.0245* 0.1960* 0.0204 0.0297 0.0385 0.0699 0.3266* 0.0232* 0.0951*
smooth Boolean equivalents 0.8344 0.1807 0.5367 0.0204 0.0297 0.0385 0.0699 0.4567 0.1995 0.3410
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.99) 0.8550 0.1623 0.5142 0.0050* 0.0075* 0.0099* 0.0194* 0.4576 0.1922 0.3306
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.9) 0.8807 0.1655 0.5065 0.0007* 0.0010* 0.0013* 0.0026* 0.4632 0.1948 0.3263
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.01) 0.5092* 0.1457 0.3611* 0.0193 0.0278 0.0356 0.0624 0.3069* 0.1794 0.2530*
OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.1) 0.2170* 0.0841 0.1572* 0.0271 0.0338 0.0397 0.0566 0.1454* 0.1143* 0.1272*
Predictor 0.6205* 0.1464 0.3544* 0.0206 0.0293 0.0372 0.0637 0.3443* 0.1698 0.2418*
Oracle 0.8487 0.1923 0.5375 0.0211 0.0307 0.0397 0.0718 0.4661 0.2125 0.3473
PubmedBERT 0.8344 0.1867 0.5090 0.0204 0.0297 0.0385 0.0699 0.4593 0.2094 0.3399
BERT 0.8344 0.1928 0.5168 0.0204 0.0297 0.0385 0.0699 0.4644 0.2191 0.3458
DistilBERT 0.8344 0.1851 0.5004 0.0204 0.0297 0.0385 0.0699 0.4427 0.1798 0.3139

auth_{run1,run2,run3} [28] 0.7705 0.2695 0.6386 0.0171 0.0249 0.0324 0.0593 0.4838 0.2804 0.4313
ECNU_RUN1 [61] 0.5147* 0.2278 0.5147 0.0490 0.0661 0.0806 0.1248 0.3540 0.2440 0.3540
ECNU_RUN2 [61] 0.3831* 0.1061 0.3831 0.0539 0.0695 0.0823 0.1190 0.2329* 0.1368 0.2329
ECNU_RUN3 [61] 0.5147* 0.2318 0.5147 0.0490 0.0661 0.0806 0.1248 0.3487 0.2438 0.3487
sheffield-bm25 [1] 0.4525* 0.1095 0.2875 0.0095 0.0138 0.0180 0.0328 0.2504* 0.1197 0.1852
sheffield-boolean [1] 0.3048* 0.0555 0.1720* 0.0061 0.0089 0.0116 0.0212* 0.1519* 0.0562* 0.1018*
sheffield-tfidf [1] 0.2572* 0.0169* 0.1052* 0.0059 0.0086 0.0112 0.0203 0.1123* 0.0154* 0.0523*
UWX [11] 0.9749 0.3694 0.8677* 0.0254 0.0369 0.0478 0.0863 0.6484* 0.4084* 0.5988*
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5.1.1 Ablation Study. We begin investigation into the first research
question with an ablation study. In this experiment, we study the
effect of the 𝜃 parameter on Boolean operators replaced by smooth
operators. Table 2 contains the results of this experiment. As not
all queries contain NOT operators, and they are far less common
than OR and AND operators, we only study the replacement of
OR and AND operators. The same 𝜃 value is set globally for all
smooth operators within a query. For example, if the AND operator
is replaced with the corresponding smooth operator 𝑓 (𝜌 (𝑑, 𝑞) ≥ 𝜃 ),
then the 𝜃 value is the same for all replacements. All other Boolean
operators in the query are replaced with equivalents from Table 1.
Note that these smooth equivalent operators correspond to leaving
the operators as is, as evidenced by the identical recall and precision
in the first and third lines of each section in Table 2.

We use the same smooth operator 𝑓 (𝜌 (𝑑, 𝑞) ≥ 𝜃 ) for both OR
and AND replacements. We test 𝜃 ∈ {0.01, 0.1} for the Boolean
OR operator and 𝜃 ∈ {0.99, 0.9} for the Boolean AND operator.
Overall, the results of the ablation study suggest that the replace-
ment smooth operators have the desired effect: when replacing the
Boolean AND operator, as 𝜃 decreases, the recall increases; when
replacing the Boolean OR operator, as 𝜃 increases, the precision
increases. The consequence of the increases in recall or precision is,
naturally, a decrease in the respective other measure. This finding
is captured most clearly by F-measure. Across the three collections,
there was a decrease in F-measure compared to the Boolean op-
erators except for the OR → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.1) replacement in the
CLEF TAR 2017 and 2018 datasets. In these instances, the increase
in F-measure compared to using the Boolean operators suggests
that the increase in precision offsets the decrease in recall.

Next, we investigate how the smooth replacements affect the
document ranking effectiveness. As smooth operators rank docu-
ments as a side-effect of the RSV calculation, we also study how
different values of 𝜃 affect the document ranking effectiveness. For
further comparison, we also re-rank the documents retrieved using
the Boolean operators with BM25, using the title of the reviews
as the query. Focusing first on recall@100 and recall@1000, the
effectiveness is generally significantly worse for the OR replace-
ments, except for CLEF TAR 2017. The AND replacements, on
the other hand, often achieve a lower, but not significantly worse
recall@𝑘 than the smooth Boolean equivalents. In rare cases, e.g.
AND → 𝑓 (𝜌 (𝑑, 𝑞) ≥ 0.9), R@1000 is insignificantly higher.

Moving to nDCG, AND operator replacement always achieves
a higher effectiveness than OR operator replacements. The Wang
et al. collection sees no improvement in nDCG over the Boolean
equivalents. The CLEF TAR 2018 collection sees no improvement at
shallow depths (nDCG@100 and nDCG@1000), but does improve at
full depth (nDCG). The CLEF TAR 2017 collection sees an improve-
ment across all three nDCG measures. In all cases where there was
an improvement, the improvement was not statistically significant.
Comparing the recall@𝑘 and nDCG measures using the BM25 title
runs, the effectiveness is always significantly worse compared to
the smooth Boolean equivalents. This is an important result because
it demonstrates that simply replacing Boolean operators with the
smooth equivalents, a more effective ranking can be achieved than
retrieving and re-ranking using the systematic review title. This is
a common baseline in many papers about screening prioritisation
for systematic reviews [17–19, 22, 60].

Table 3: Computed features of each operator in queries. Chil-
dren refer to the decedents, or operands, of an operator.

Feature Description

Depth Depth of the operator in the query.
Children Number of children the operator has.
NumRet Documents retrieved prior to smoothening.
Child Avg. Average documents retrieved by children.
Child Std. 𝜎 of documents retrieved by children.
Child Operators Number of children that are operators.
Child Atoms Number of children that are atomic queries.

5.1.2 Oracle Search. The results of the ablation study demon-
strate that the smooth operators can be used to effectively ma-
nipulate the recall and precision of an existing Boolean query.
However, the replacements often come with trade-offs: an increase
in recall causes a decrease in precision, for example. Therefore,
we next investigate whether it is possible to increase both pre-
cision and recall, using all three replacement operators. To ac-
complish this, we perform a parameter sweep of 𝜃 using the rele-
vance assessments to find an acceptable value. When replacing the
Boolean OR operator with a smooth replacement, we test values of
𝜃 in the range {0.0, 0.001, 0.01, 0.1, 0.15, 0.2}. For the Boolean AND
and NOT smooth replacements, we test values of 𝜃 in the range
{1.0, 0.999, 0.99, 0.95, 0.9, 0.8}. For each subquery in the query that
contains an operator, we optimise that subquery by ensuring that
recall increases or stays the same while F-measure increases. As
the order of the 𝜃 values either increases or decreases the number
of documents, when the optimisation criteria is no longer satisfied,
the rest of the 𝜃 values are not tested.

The Oracle row in Table 2 reports the parameterisation which
achieved the highest F-measure for each dataset. We find that across
the three collections, it is possible to improve the effectiveness
across all evaluation measures compared to using smooth Boolean
equivalents, except for precision and F-measure on the 2017 CLEF
TAR collection. In this instance, the bottom-up, local parameter
search causes some topics to retain or have a higher recall, but a
lower precision. Perhaps most interestingly, smooth operators are
able to achieve a higher recall than the smooth Boolean equivalents.

5.1.3 Predicting 𝜃 . The results of the oracle 𝜃 parameter search
demonstrate that more effective queries in terms of not only both
recall and precision, but ranking quality are possible. This higher
effectiveness requires one to have a thorough understanding of the
effect that changing 𝜃 will have on the overall result set of the query.
Instead, a method for predicting suitable 𝜃 values is desirable.

Before attempting supervised training to predict 𝜃 values, we
first investigated whether there were any correlations between 𝜃

and features about the properties of an operator, such as the depth
in the query or the number of children. Table 3 shows features used.

We use the default decision tree classifier from scikit-learn [33],
and train it to predict the oracle search parameters from Section 5.1.2.
We found that predicting appropriate 𝜃 values depending on dif-
ferent query contexts was challenging. Table 2 contains the results
for predicting 𝜃 values (‘Predictor’ row for each collection). The
results suggest that the classifier predicted values that smoothened
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OR equivalents too much. The recall is dramatically lower than
the Boolean operators, suggesting that relevant documents ranked
poorly are being removed. In general, we found that the precision
and recall of the ‘Predictor’ method lies somewhere in between
the precision and recall of the replacement methods. That is, the
recall of the ‘Predictor’ method is lower than AND replacement
but higher than OR replacement; and likewise for precision but re-
versed. Developing an effective method for predicting appropriate
values of 𝜃 is a challenge beyond the scope of this paper. We leave
an investigation into more effective methods to future work.

5.1.4 Comparison with CLEF TAR 2018 participants. The CLEF TAR
2018 track introduced a new task from 2017 which involved partici-
pants retrieving documents rather than simply re-ranking the set of
documents retrieved initially by the Boolean query. Table 2 contains
the results of all participants for this task. Rows that have been
marked in grey are not directly comparable to our method as they
involve human intervention or explicit relevance feedback. For ex-
ample, the Waterloo team used active learning and had annotators
assess documents for their relevance [11]. Comparing the smooth
Boolean equivalent runs, the runs from ECNU [61] were able to
achieve a higher recall@𝑘 and nDCG@𝑘 . However, the smooth
model was able to achieve a higher nDCG, likely because it achieves
a higher recall than these methods. Although the oracle method is
able to obtain a higher effectiveness across all measures compared
to the smooth Boolean equivalents, the ranking effectiveness is still
lower than the runs from ECNU. Despite this, the runs from ECNU
are not statistically more effective than the smooth Boolean equiv-
alents. Their use of pseudo-relevance feedback likely contributed
the most to the ranking effectiveness. Additional ranking signals
like those from pseudo-relevance feedback for improving ranking
effectiveness are left to future work.

5.2 Effectiveness with Neural Rankers
Next, we investigate RQ2: Can the use of large pre-trained lan-
guage models in conjunction with smooth Boolean operators enhance
the effectiveness of systematic review literature search queries? We
fine-tuned three BERT bi-encoder models on the TripClick collec-
tion [37]. Then, we used these rather than BM25 as the retrieval
model for ranking documents using the smooth model. Table 2
contains the results of these experiments, under the names PubMed-
BERT, BERT, and DistilBERT. We found that across the three col-
lections the BERT model was surprisingly more effective than Pub-
MedBERT in all ranking metrics. Comparing BERT to the smooth
Boolean equivalents, although BERT is able to achieve a higher
nDCG@𝑘 than BM25, the recall@𝑘 is worse. This suggests that
BERT is more effective than BM25 at shallow depths, but worse
at deeper depths. More interestingly, the Oracle run has an even
higher ranking effectiveness than the BERT ranker across the three
collections. With appropriate 𝜃 values, an initially worse ranking
can be refined to outperform an initially better ranking.

In summary, the use of complex neural rankers for this task
provides only marginal gains in effectiveness, while being consider-
ably less efficient. We note that a discrepancy between training and
evaluation data most likely negatively affects the effectiveness of
the neural rankers. In training, queries consisted of keyword-style
queries from a click log, whereas, during inference, we used the
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(a) Wang et al. [58] collection.
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Figure 3: Flow diagrams that show the relationship between
smooth operators as chosen by the oracle method. Operators
at the leftmost side are at the highest depth in the query.
The number following ‘→’ indicates the total number of non-
atomic subqueries beneath that subquery (i.e., children that
are non-atomic). Green lines indicate subqueries that have
more than ten kinds of operators of the same type leading
into it. Only the first four depths are shown for space reasons.

systematic review titles as queries. Furthermore, we find that in
the context of the smooth retrieval model, it is more important
that rankers are effective at deeper depths than shallow depths,
given that for systematic review literature search, recall is far more
important than precision.

5.3 Systematic Review Types
Finally, we investigate RQ3: How effective are smooth Boolean oper-
ators for systematic review literature searches across different types of
systematic reviews, and what factors influence potential differences
in effectiveness? We investigate this research question by focusing
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on the results obtained by the Oracle method across the three col-
lections. One interesting finding is that while the Oracle results
on the Wang et al. collection are statistically significantly more
effective than the smooth Boolean equivalents, the same does not
hold for the CLEF TAR collections. One potential reason for this
could be the differences in the types of systematic reviews that
form the basis of the topics of the three collections. The Wang et
al. collection contains systematic reviews over a broad set of top-
ics, while the CLEF TAR collections contains systematic reviews
solely about diagnostic test accuracy. Different types of systematic
reviews may focus on retrieving different documents, such as ran-
domised controlled trials or meta-analyses, leading to differently
designed queries.

Figures 3a and 3b show the differences in 𝜃 parameters chosen
by the Oracle method between the CLEF TAR and Wang et al.
collections. Interestingly, most OR subqueries at the first depth
for CLEF TAR queries are not smoothed, whereas there is greater
variability in how operators at the first depth are smoothed for the
Wang et al. collection. Three other differences with the Wang et al.
collection are (1) the higher number of AND and NOT operators at
the first depth; (2) fewer operators that have more than ten parents;
and (3) more operators where smoothing has been applied.

One possible reason many operators have no smoothing ap-
plied in the first three depths for the CLEF TAR collections is that
these queries are already highly effective. That is, the reason that
many operators are not smoothed, and as a result, do not obtain
statistically higher effectiveness compared to the smooth Boolean
equivalents, could be that many of these queries contain effective
terms and are structured in such a way that further improving
the effectiveness of these queries by any means would be difficult.
Meanwhile, the fact that queries in the Wang et al. collection have
the majority of their operators smoothed may indicate that these
queries could be greatly improved by selecting more appropriate
terms or better structuring. These differences may also be due to
the kinds of literature these queries are developed for searching.
For example, the topics in the Wang et al. collection may be more
challenging to formulate queries for, given the nature of searching
for randomised controlled trials, versus the kinds of documents
that are relevant for systematic reviews of diagnostic test accuracy.

In short, this difference between the two collections regarding
where and how soft operators are used has revealed interesting
characteristics about the underlying topics being searched. There
are considerable differences between the queries of the Wang et al.
collection and the two CLEF TAR collections that should be con-
sidered when using smooth operators. We leave such investigation
into how to exploit these differences to help predict appropriate
values of 𝜃 to future work.

6 CONCLUSION
We have introduced the smooth operator model, which can broaden
or restrict the document set size of Boolean queries. The smooth
operator model has several properties that improve upon previous
extensions to the Boolean retrieval model. Most notably, the syntax
and semantics of queries are identical to Boolean queries, except
for how smooth an operator should be. If no smoothing is applied
to any operator, it is equivalent to the Boolean retrieval model.

One property of the smooth operator model is that it produces
document rankings. Using the smooth Boolean equivalents, we
found that the smooth operator model was significantly more effec-
tive than ranking the set of retrieved documents by the systematic
review title (a common baseline in related research). Furthermore,
neural retrieval models did not statistically improve the smooth
operator model’s ranking effectiveness, suggesting that the smooth
operator model’s rank fusion component produces effective rank-
ings regardless of the ranking function used to rank atomic queries.

When used to modify the set of retrieved documents, i.e., broad-
ening or narrowing the set of retrieved documents, queries could
be directly optimised for precision or recall with the 𝜃 parameter
alone. This is important for specialised search scenarios, as iden-
tifying specific terms to broaden or narrow the scope of a query
is challenging even for expert searchers. We also found that im-
proving the precision and recall of queries is possible using only
smooth operators. However, we have not identified any heuristics
for how smooth an operator should be in different search contexts.
As we could not reliably predict the smoothness of operators using
a feature-based supervised learning method, we leave the effective
prediction of suitable 𝜃 values to future work.

The smooth operator model was demonstrated to improve the
effectiveness of systematic review literature search queries. Im-
proving the effectiveness of these queries is a challenging problem,
given that expert human searchers develop the queries. Using our
smooth operator model, the effectiveness of existing systematic
review literature search queries can be improved without changing
the syntactic or semantic structure of queries. In practice, this also
means that when formulating new queries using the smooth opera-
tor model, the choice of terms that broaden or restrict the scope of
a query may become less important, as the relationship between
these terms and clauses can be relaxed. Another advantage of the
smooth operator model is the ability to intermix exact match and
neural retrieval models. Although we did not deeply investigate the
combination of exact match and neural retrieval models, in practice,
it would allow expert searchers to combine the restrictiveness of
exact match (e.g., for filtering specific studies) with the semantic ex-
pressiveness of neural models (e.g., not needing to search synonyms
or plurals of terms explicitly). We believe that queries developed
from scratch with the smooth operator model in mind could be
more effective than adapting them to Boolean queries as we have
done in this paper. More effective queries for systematic review
literature search lead to fewer documents that need to be screened
for the review. As a result, systematic reviews can be completed in
a more cost-effective and timely manner; overall leading to more
positive healthcare outcomes.
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