Adapting the Transformer Attention Mechanism for Efficient and Effective Information Retrieval

Tübingen, 06.06.2025

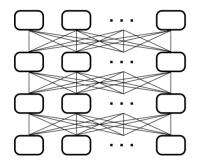
Ferdinand Schlatt

ferdinand.schlatt@uni-jena.de

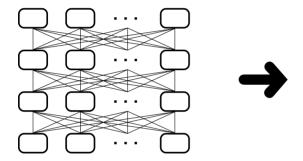
Friedrich-Schiller-Universität Jena

Standard Encoder Models for NLP

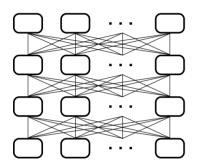
Standard Encoder Models for NLP

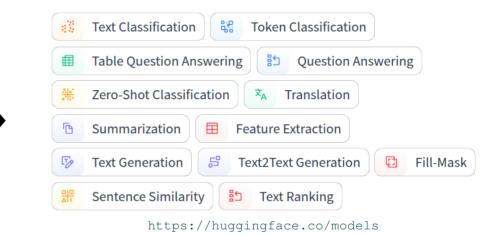


Standard Encoder Models for NLP



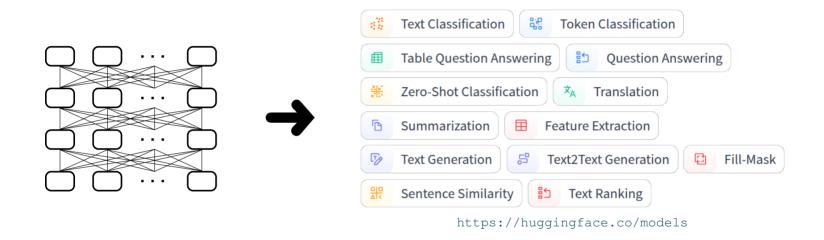
Standard Encoder Models for NLP





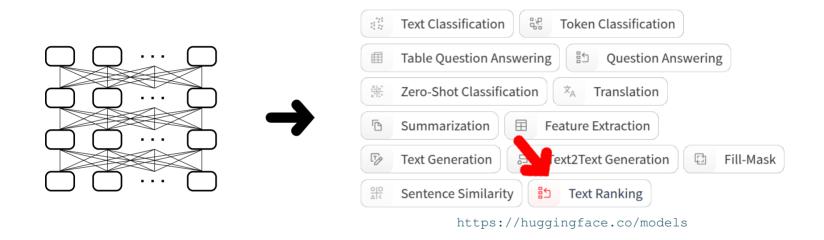
Standard Encoder Models for NLP

Transformer-based models are designed be as flexible as possible.



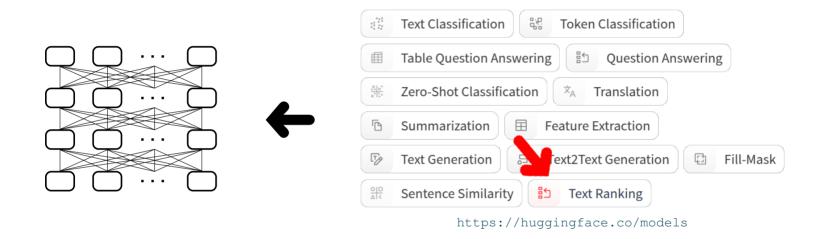
Standard Encoder Models for NLP

Transformer-based models are designed be as flexible as possible.



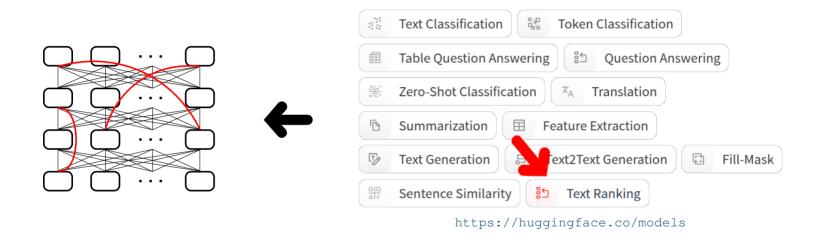
Standard Encoder Models for NLP

Transformer-based models are designed be as flexible as possible.



Standard Encoder Models for NLP

Transformer-based models are designed be as flexible as possible.

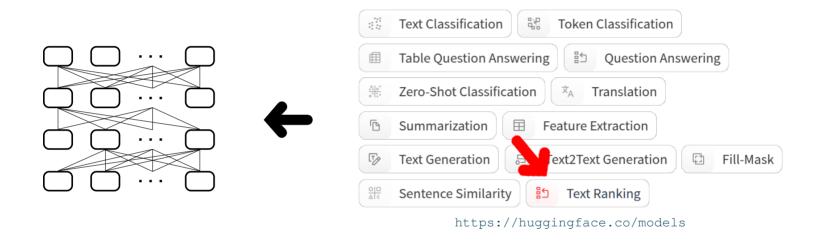


Can we improve performance by "fine-tuning" the attention mechanism?

□ We could add attention to make the model more effective ...

Standard Encoder Models for NLP

Transformer-based models are designed be as flexible as possible.



- □ We could add attention to make the model more effective ...
- □ ... or remove attention to make the model more efficient

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

[CLS] Q [SEP] 🖹 [SEP]

BERT

2.4

0.1

1.9

© Ferdinand Schlatt, Webis 2025

Guido van Rossum invented Python. monoBERT (pointwise) [Nogueira and Cho, arXiv'19]

Query **Q** learn python

Documents 🖹

Set-Encoder

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

[CLS] Q [SEP] ☐ [SEP]

[CLS] Q [SEP] 🖹 [SEP]

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

Query **Q** learn python

Documents Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

monoBERT (pointwise) [Nogueira and Cho, arXiv'19]

[CLS] Q [SEP] 🖹 [SEP]				2.4
[CLS] Q [SEP] 🖹 [SEP]	→	BERT	→	0.1
[CLS] Q [SEP] 🖹 [SEP]				1.9

Issue: The model scores each document independently.

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

Query **Q** learn python

Documents Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

monoBERT (pointwise) [Nogueira and Cho, arXiv'19]

[CLS] Q [SEP] 🖹 [SEP]				2.4
[CLS] Q [SEP] 🖹 [SEP]	→	BERT	→	0.1
[CLS] Q [SEP] 🖹 [SEP]				1.9

Issue: The model scores each document independently.

→ Listwise (and pairwise) models enable interactions between documents.

© Ferdinand Schlatt, Webis 2025

Set-Encoder

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

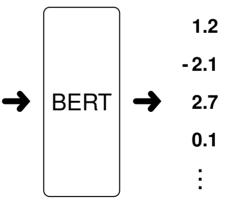
Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

duoBERT (pairwise) [Nogueira et al., arXiv'20]

[CLS] Q [SEP] ☐ [SEP] ☐ [SEP] [CLS] Q [SEP] ☐ [SEP] ☐ [SEP] [CLS] Q [SEP] ☐ [SEP] ☐ [SEP] [CLS] Q [SEP] ☐ [SEP] ☐ [SEP]



Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

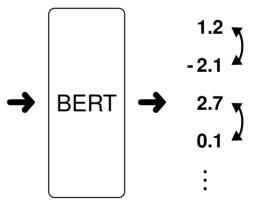
Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

duoBERT (pairwise) [Nogueira et al., arXiv'20]

[CLS] Q [SEP] ➡ [SEP] ➡ [SEP] [CLS] Q [SEP] ➡ [SEP] ➡ [SEP] [CLS] Q [SEP] ➡ [SEP] ➡ [SEP] [CLS] Q [SEP] ➡ [SEP] ➡ [SEP]



Issue: Relevance scores are not symmetric.

Comparing Pointwise, Pairwise, and Listwise Cross-Encoders

Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

RankGPT (listwise) [Sun et al., EMNLP'23]

Prompt: ... Query: Q [1]: \square [2]: \square [3]: \square Frompt: ... Query: Q [1]: \square [3]: \square [2]: \square Frompt: ... Query: Q [2]: \square [1]: \square [3]: \square GPTPrompt: ... Query: Q [2]: \square [3]: \square [1]: \square Frompt: ... Query: Q [2]: \square [3]: \square [1]: \square GPT

.

1 > 3 > 2

1 > 3 > 2

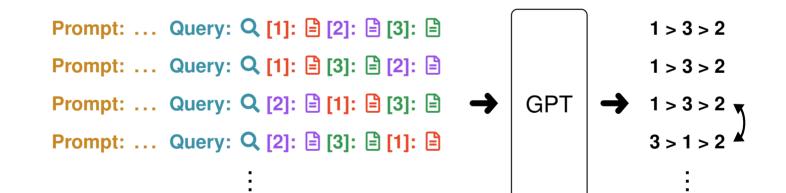
1 > 3 > 2

3 > 1 > 2

Set-EncoderComparing Pointwise, Pairwise, and Listwise Cross-EncodersQuery Qlearn python

Documents Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

RankGPT (listwise) [Sun et al., EMNLP'23]



Issue: Relevance preference order is not consistent.

Attention Mechanism

[CLS] learn python [SEP] Python is a great language to learn . [SEP][CLS] learn python [SEP] Pythons live in the rainforest . [SEP][CLS] learn python [SEP] Guido van Rossum invented Python . [SEP]

Attention Mechanism

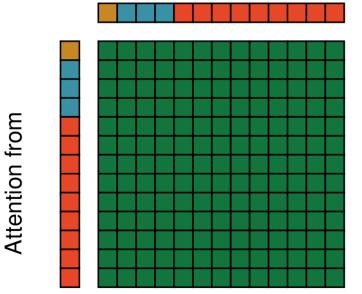
[CLS] learn python [SEP] Python is a great language to learn . [SEP]

[CLS] learn python [SEP] Pythons live in the rainforest . [SEP]

[CLS] learn python [SEP] Guido van Rossum invented Python . [SEP]

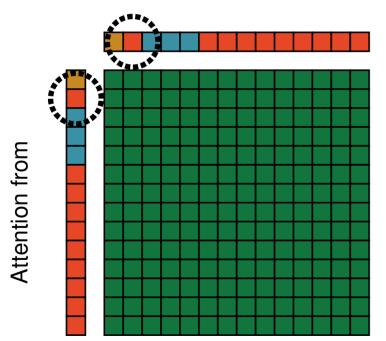
Attention Mechanism

[CLS] learn python [SEP] Python is a great language to learn . [SEP][CLS] learn python [SEP] Pythons live in the rainforest . [SEP][CLS] learn python [SEP] Guido van Rossum invented Python . [SEP]



Attention Mechanism

[CLS] [INT] learn python [SEP] Python is a great language to learn . [SEP]
[CLS] [INT] learn python [SEP] Pythons live in the rainforest . [SEP]
[CLS] [INT] learn python [SEP] Guido van Rossum invented Python . [SEP]

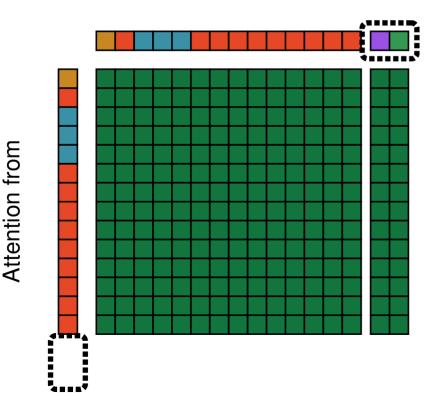


Attention to

1. Insert an extra [INT] token

Attention Mechanism

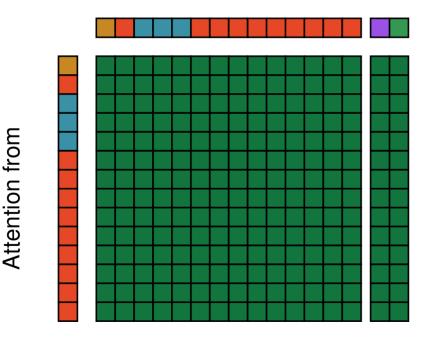
[CLS] [INT] learn python [SEP] Python is a great language to learn . [SEP][CLS] [INT] learn python [SEP] Pythons live in the rainforest . [SEP][CLS] [INT] learn python [SEP] Guido van Rossum invented Python . [SEP]



- 1. Insert an extra [INT] token
- 2. Allow a document to attend to all other documents' [INT] tokens

Attention Mechanism

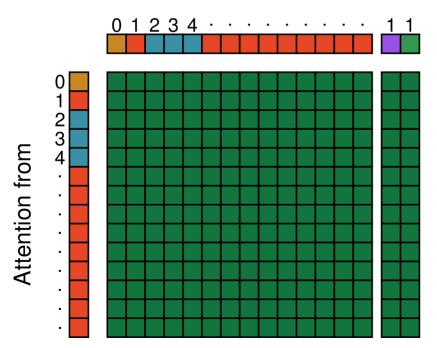
[CLS] [INT] learn python [SEP] Python is a great language to learn . [SEP][CLS] [INT] learn python [SEP] Pythons live in the rainforest . [SEP][CLS] [INT] learn python [SEP] Guido van Rossum invented Python . [SEP]



- 1. Insert an extra [INT] token
- 2. Allow a document to attend to all other documents' [INT] tokens
- [INT] tokens aggregate semantic information and shares information with other documents

Attention Mechanism

[CLS] [INT] learn python [SEP] Python is a great language to learn . [SEP][CLS] [INT] learn python [SEP] Pythons live in the rainforest . [SEP][CLS] [INT] learn python [SEP] Guido van Rossum invented Python . [SEP]



- 1. Insert an extra [INT] token
- 2. Allow a document to attend to all other documents' [INT] tokens
- [INT] tokens aggregate semantic information and shares information with other documents
- Permutation-invariant because all [INT] tokens share the same positional encoding

Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	DĽ19	DĽ20	TIREx
BM25	0.480	0.494	0.286
monoT5 3B	0.705	0.715	0.313
RankT5 3B	0.710	0.711	0.322
RankGPT-40	0.725	0.719	_
RankZephyr	0.719	0.720	0.320
Set-Encoder _{BASE}			
$\textbf{Set-Encoder}_{\text{LARGE}}$			

Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	DĽ19	DĽ20	TIREx
BM25	0.480	0.494	0.286
monoT5 3B	0.705	0.715	0.313
RankT5 3B	0.710	0.711	0.322
RankGPT-40	0.725	0.719	—
RankZephyr	0.719	0.720	0.320
Set-Encoder _{BASE}	0.724	0.710	0.311
$\textbf{Set-Encoder}_{\text{LARGE}}$			

□ Set-Encoder is on-par with SOTA re-rankers in-domain

Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	DĽ19	DĽ20	TIREx
BM25	0.480	0.494	0.286
monoT5 3B	0.705	0.715	0.313
RankT5 3B	0.710	0.711	0.322
RankGPT-40	0.725	0.719	_
RankZephyr	0.719	0.720	0.320
Set-Encoder _{BASE}	0.724	0.710	0.311
$\textbf{Set-Encoder}_{\text{LARGE}}$	0.727	0.735	0.321

□ Set-Encoder is on-par with SOTA re-rankers in-domain and out-of-domain

Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	DĽ19	DĽ20	TIREx
BM25	0.480	0.494	0.286
monoT5 3B	0.705	0.715	0.313
RankT5 3B	0.710	0.711	0.322
RankGPT-40	0.725	0.719	_
RankZephyr	0.719	0.720	0.320
Set-Encoder _{BASE}	0.724	0.710	0.311
$\textbf{Set-Encoder}_{\text{LARGE}}$	0.727	0.735	0.321

□ Set-Encoder is on-par with SOTA re-rankers in-domain and out-of-domain

Despite being distilled from RankZephyr, the Set-Encoder is more effective

Effectiveness

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	DĽ19	DĽ20	TIREx
BM25	0.480	0.494	0.286
monoT5 3B	0.705	0.715	0.313
RankT5 3B	0.710	0.711	0.322
RankGPT-40	0.725	0.719	_
RankZephyr	0.719	0.720	0.320
Set-Encoder _{BASE}	0.724	0.710	0.311
$\textbf{Set-Encoder}_{\text{LARGE}}$	0.727	0.735	0.321

□ Set-Encoder is on-par with SOTA re-rankers in-domain and out-of-domain

- Despite being distilled from RankZephyr, the Set-Encoder is more effective
- → LLM-rankers are not permutation-invariant and affected by the first-stage

Permutation Invariance

Re-ordering input documents affects previous listwise model's ranking preferences.

Permutation Invariance

Re-ordering input documents affects previous listwise model's ranking preferences. We create corrupted BM25 rankings to test a model's robustness to permutations.

- 1. Inverse ideal ranking
- 2. Randomly shuffled ranking

- 3. Original BM25 ranking
- 4. Ideal ranking

Permutation Invariance

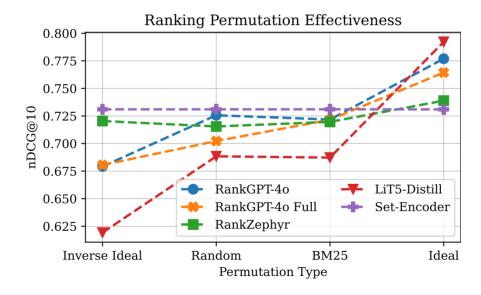
Re-ordering input documents affects previous listwise model's ranking preferences. We create corrupted BM25 rankings to test a model's robustness to permutations.

1. Inverse ideal ranking

3. Original BM25 ranking

2. Randomly shuffled ranking

4. Ideal ranking



Permutation Invariance

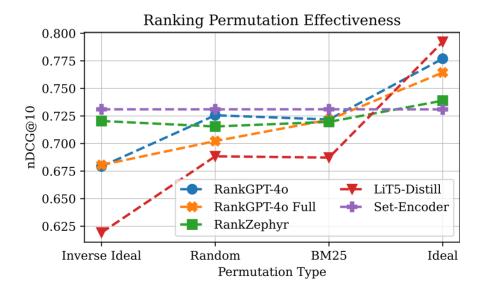
Re-ordering input documents affects previous listwise model's ranking preferences. We create corrupted BM25 rankings to test a model's robustness to permutations.

1. Inverse ideal ranking

3. Original BM25 ranking

2. Randomly shuffled ranking

4. Ideal ranking



Previous listwise re-rankers are biased by the order of the input documents

Permutation Invariance

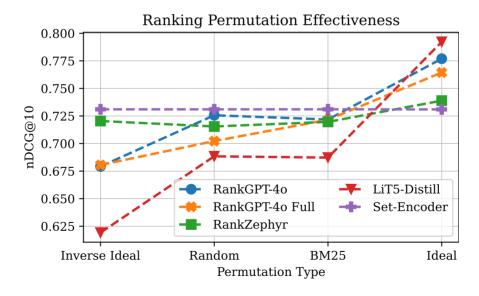
Re-ordering input documents affects previous listwise model's ranking preferences. We create corrupted BM25 rankings to test a model's robustness to permutations.

1. Inverse ideal ranking

3. Original BM25 ranking

2. Randomly shuffled ranking

4. Ideal ranking



Previous listwise re-rankers are biased by the order of the input documents

Set-Encoder is invariant to the order of the input documents

Effectiveness

What about comparing the Set-Encoder to a standard pointwise cross-encoder?

Effectiveness

What about comparing the Set-Encoder to a standard pointwise cross-encoder?

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	TREC DL 19	TREC DL 20	TIREx
Set-Encoder _{BASE}	0.724	0.710	0.311
Set-Encoder $_{\text{LARGE}}$	0.727	0.735	0.321
monoELECTRA _{BASE}			
$monoELECTRA_{\text{LARGE}}$			

Effectiveness

What about comparing the Set-Encoder to a standard pointwise cross-encoder?

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	TREC DL 19	TREC DL 20	TIREx
Set-Encoder _{BASE}	0.724	0.710	0.311
Set-Encoder $_{\text{LARGE}}$	0.727	0.735	0.321
monoELECTRA _{BASE}	0.720	0.711	0.314
$monoELECTRA_{\text{LARGE}}$	0.733	0.727	0.321

Pointwise model is as effective as a listwise model (and LLMs)

Effectiveness

What about comparing the Set-Encoder to a standard pointwise cross-encoder?

nDCG@10 on TREC Deep Learning 2019 and 2020 passage and TIREx

Model	TREC DL 19	TREC DL 20	TIREx
Set-Encoder _{BASE}	0.724	0.710	0.311
Set-Encoder $_{\text{LARGE}}$	0.727	0.735	0.321
monoELECTRA _{BASE}	0.720	0.711	0.314
$monoELECTRA_{\text{LARGE}}$	0.733	0.727	0.321

- Pointwise model is as effective as a listwise model (and LLMs)
- □ Are document interactions necessary for independent relevance judgements?

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

MS MARCO contains many lexical near-duplicates.

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

MS MARCO contains many lexical near-duplicates. (Not actual MS MARCO data.)

Python is a great language to learn.Python is a great language to learn now.Pythons live in the rainforest.Guido van Rossum invented Python.

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

MS MARCO contains many lexical near-duplicates. (Not actual MS MARCO data.)

Python is a great language to learn.

- Python is a great language to learn now.

Pythons live in the rainforest. Guido van Rossum invented Python.

Fine-tune models to rank according to relevance and put duplicates at the end.

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

Model	TREC DL 19	TREC DL 20
First Stage	0.700	0.722
RankGPT-40	0.741	0.773
RankZephyr	0.700	0.760
monoELECTRA	0.785	0.753
Set-Encoder	0.821	0.803
Set-Enc. [INT]		

 $\alpha\text{-nDCG@10}\ (\alpha=0.99)$ on the synthetic task

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

Model	TREC DL 19	TREC DL 20
First Stage	0.700	0.722
RankGPT-4o	0.741	0.773
RankZephyr	0.700	0.760
monoELECTRA	0.785	0.753
Set-Encoder	0.821	0.803
Set-Enc. [INT]		

 α -nDCG@10 ($\alpha = 0.99$) on the synthetic task

□ Set-Encoder improves over baselines in novelty-aware re-ranking

Listwise Re-Ranking

We build a synthetic task which requires document interactions.

Model	TREC DL 19	TREC DL 20
First Stage	0.700	0.722
RankGPT-40	0.741	0.773
RankZephyr	0.700	0.760
monoELECTRA	0.785	0.753
Set-Encoder	0.821	0.803
Set-Enc. [INT]	0.773	0.748

 α -nDCG@10 ($\alpha = 0.99$) on the synthetic task

- □ Set-Encoder improves over baselines in novelty-aware re-ranking
- □ Without the interaction token, the Set-Encoder is less effective

Intermediate Conclusion

Intermediate Conclusion

The Set-Encoder enables permutation-invariant inter-document interactions.

□ It is on-par with SOTA LLM re-rankers

Intermediate Conclusion

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency

Intermediate Conclusion

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency
- **BUT:** Interactions probably not necessary for independent judgments

Intermediate Conclusion

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency
- **BUT:** Interactions probably not necessary for independent judgments
- → More complex tasks are necessary to evaluate modern models

Intermediate Conclusion

The Set-Encoder enables permutation-invariant inter-document interactions.

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency
- **BUT:** Interactions probably not necessary for independent judgments
- ➔ More complex tasks are necessary to evaluate modern models

Checkpoints are released on HF and can be used with our Lightning IR framework.

Intermediate Conclusion

The Set-Encoder enables permutation-invariant inter-document interactions.

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency
- **BUT:** Interactions probably not necessary for independent judgments
- ➔ More complex tasks are necessary to evaluate modern models

Checkpoints are released on HF and can be used with our Lightning IR framework.

Code and paper @ webis-de/set-encoder

Intermediate Conclusion

The Set-Encoder enables permutation-invariant inter-document interactions.

- □ It is on-par with SOTA LLM re-rankers
- Permutation invariance is crucial for robustness and efficiency
- **BUT:** Interactions probably not necessary for independent judgments
- More complex tasks are necessary to evaluate modern models

Checkpoints are released on HF and can be used with our Lightning IR framework.

Questions?

Code and paper @
webis-de/set-encoder

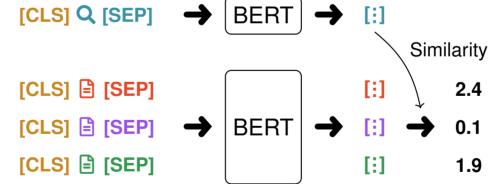
Standard Bi-Encoder Model

Standard Bi-Encoder Model

Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.



Sentence-BERT [Reimers and Gurevych, EMNLP'19]

Token-Independent Text Encoder (TITE)

Standard Bi-Encoder Model

Query **Q** learn python

Documents 🖹

Python is a great language to learn. Pythons live in the rainforest. Guido van Rossum invented Python.

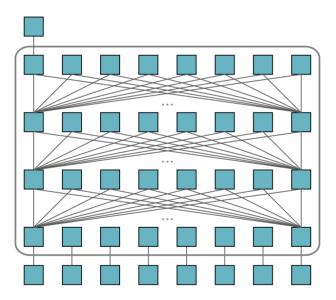
Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

[CLS] / First Token Pooling

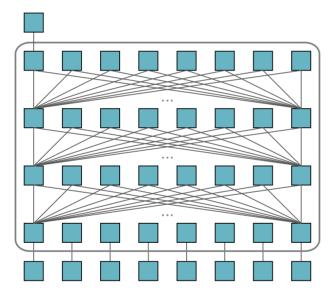


Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

[CLS] / First Token Pooling

Mean Pooling



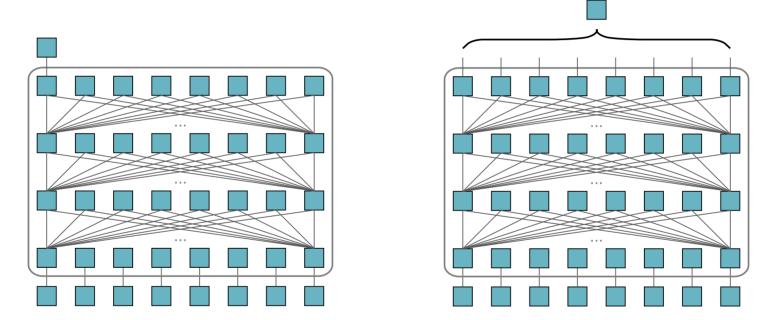


Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

[CLS] / First Token Pooling

Mean Pooling



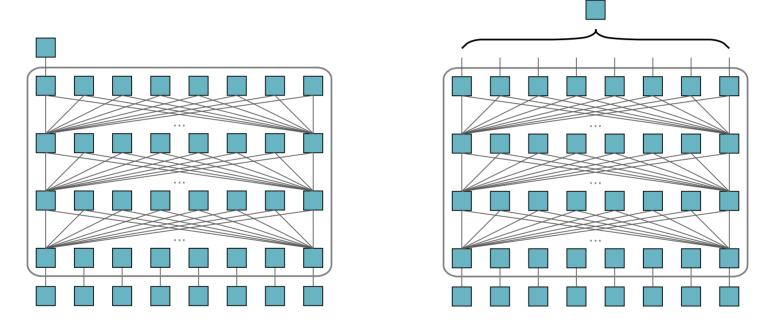
ICLS] pooling learns aggregation but discards token representations

Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

[CLS] / First Token Pooling

Mean Pooling



ICLS] pooling learns aggregation but discards token representations

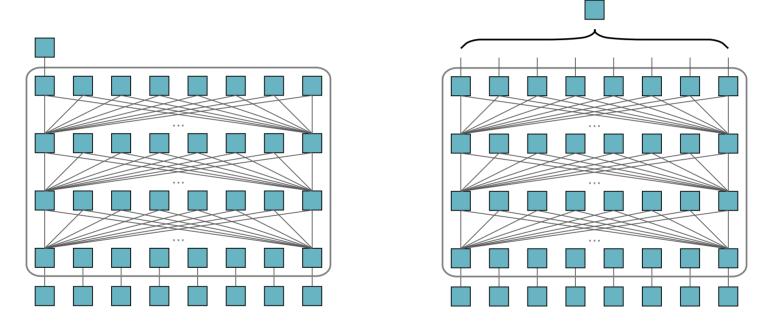
Mean pooling is static but uses all token representations

Pooling in Bi-Encoder Models

To obtain a single vector, bi-encoder models pool the token representations.

[CLS] / First Token Pooling

Mean Pooling



ICLS] pooling learns aggregation but discards token representations

- Mean pooling is static but uses all token representations
- Combine both approaches by pooling within the transformer layers

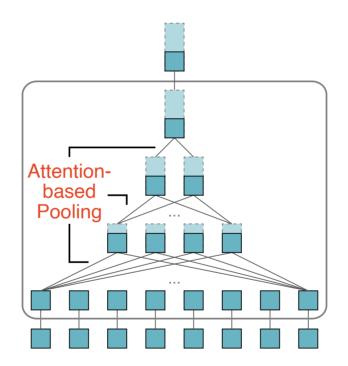
Encoder Model with Single Vector Output

Combine both approaches by pooling within the transformer layers.

Encoder Model with Single Vector Output

Combine both approaches by pooling within the transformer layers.

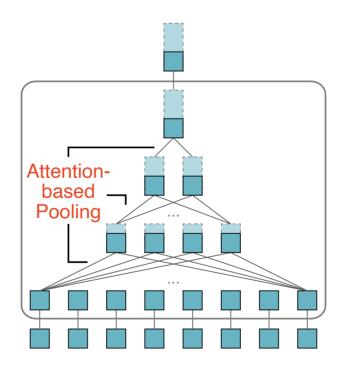
Token-Independent Text Encoder



Encoder Model with Single Vector Output

Combine both approaches by pooling within the transformer layers.

Token-Independent Text Encoder

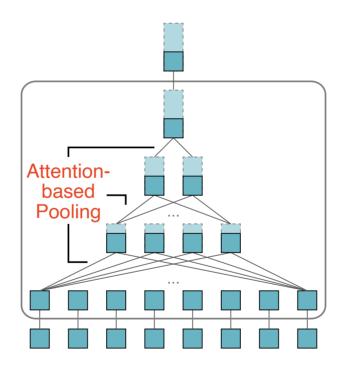


□ TITE outputs a single sequence-level vector for an input sequence

Encoder Model with Single Vector Output

Combine both approaches by pooling within the transformer layers.

Token-Independent Text Encoder



- □ TITE outputs a single sequence-level vector for an input sequence
- Optionally, the dimensionality of vectors can be increased

Attention-based Pooling

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Attention-based Pooling

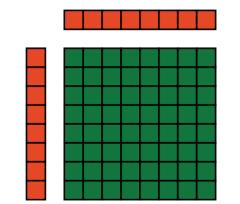
Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)

Attention-based Pooling

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)



Attention to

Attention from

Attention-based Pooling

[:]

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)

Attention from

Attention to

1. Pool the representations of neighboring tokens

Attention-based Pooling

[:]

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)

Attention to

- 1. Pool the representations of neighboring tokens
- 2. Allow a pooled "meta-token" to attend to all tokens of the previous layer

Attention-based Pooling

[:]

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)

Attention to

- 1. Pool the representations of neighboring tokens
- 2. Allow a pooled "meta-token" to attend to all tokens of the previous layer
- The output representations
 become smaller with each layer

Attention-based Pooling

[:]

Attention-based pooling builds on the Funnel Transformer. [Dai et al., NeurIPS'20]

Python is a great language to learn . (Process is the same for queries)

Attention to

- 1. Pool the representations of neighboring tokens
- 2. Allow a pooled "meta-token" to attend to all tokens of the previous layer
- The output representations
 become smaller with each layer
- Fine-grained attention across
 "meta-tokens"

Efficiency and Effectiveness

Efficiency and Effectiveness

Efficiency

Queries	Docs
48.0	8.7

Queries and documents per second (\times 1,000)

Efficiency and Effectiveness

Efficiency

Model	Queries Doc	
<u>BERT</u> ModernBERT	48.0	8.7
TITE (Base) TITE (Upscale)	89.0 (1.9×)	20.8 (2.4×)

Queries and documents per second (\times 1,000)

□ Around 2× faster than BERT

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT		
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- $\hfill\square$ Around 2× faster than BERT
- Upscaling incurs small overhead

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- $\hfill\square$ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- □ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Effectiveness

Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE			
TITE (Base)			
TITE (Upscale)			

nDCG@10 on TREC DL and BEIR

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- $\hfill\square$ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Effectiveness

Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE			
TITE (Base)	.705	.670	.449
TITE (Upscale)			

nDCG@10 on TREC DL and BEIR

□ TITE as effective as S-BERT

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- $\hfill\square$ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Effectiveness

Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE			
TITE (Base)	.705	.670	.449
TITE (Upscale)	.724	.686	.451
nDCG@10 on TREC DL and BEIR			

- □ TITE as effective as S-BERT
- Upscaling improves effectiveness

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- □ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Effectiveness

Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE	.723	.711	.476
TITE (Base)	.705	.670	.449
TITE (Upscale)	.724	.686	.451
		l and PE	

nDCG@10 on TREC DL and BEIR

- □ TITE as effective as S-BERT
- Upscaling improves effectiveness
- Not as effective as RetroMAE

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs		
BERT	48.0	8.7		
ModernBERT	41.1 (0.9×)	8.3 (1.0×)		
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)		
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)		

Queries and documents per second (\times 1,000)

- □ Around 2× faster than BERT
- Upscaling incurs small overhead
- □ Flash BERT > ModernBERT

Effectiveness

Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE	.723	.711	.476
TITE (Base)	.705	.670	.449
TITE (Upscale)	.724	.686	.451
		l and RE	

nDCG@10 on TREC DL and BEIR

- □ TITE as effective as S-BERT
- Upscaling improves effectiveness
- □ Not as effective as RetroMAE

RetroMAE is a single-vector model pre-trained for text retrieval.

Efficiency and Effectiveness

Efficiency

Model	Queries	Docs
BERT	48.0	8.7
ModernBERT	41.1 (0.9×)	8.3 (1.0×)
TITE (Base)	89.0 (1.9×)	20.8 (2.4×)
TITE (Upscale)	70.1 (1.5×)	16.3 (1.9×)

Queries and documents per second (\times 1,000)

- □ Around 2× faster than BERT
- Upscaling incurs small overhead
- $\ \ \, \square \ \ \, Flash \ BERT > Modern BERT$

Effectiveness

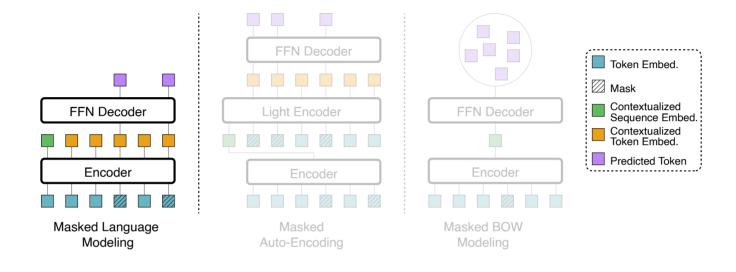
Model	DĽ19	DĽ20	BEIR
S-BERT	.700	.688	.449
RetroMAE	.723	.711	.476
TITE (Base)	.705	.670	.449
TITE (Upscale)	.724	.686	.451
		and RE	IR

nDCG@10 on TREC DL and BEIR

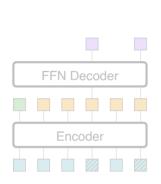
- TITE as effective as S-BERT
- Upscaling improves effectiveness
- Not as effective as RetroMAE

RetroMAE is a single-vector model pre-trained for text retrieval.

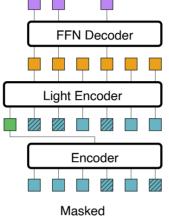
Is TITE less effective than RetroMAE due to the architecture or pre-training?



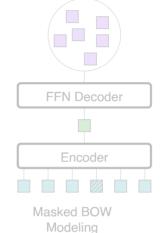
Sequence-Level Pre-Training

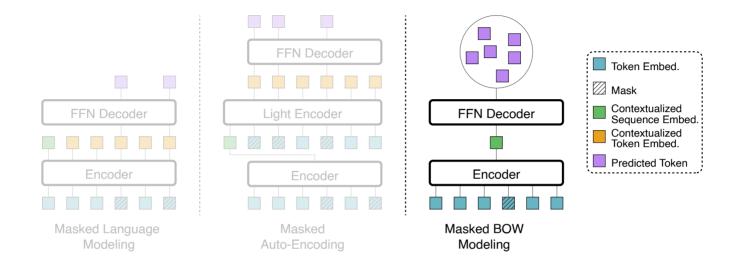


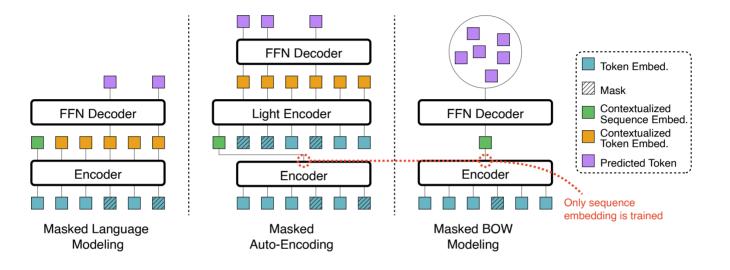
Masked Language Modeling

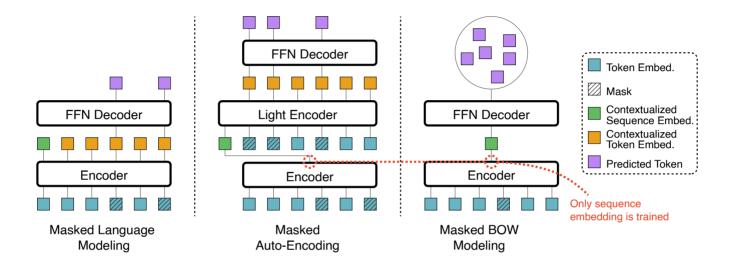


Masked Auto-Encoding

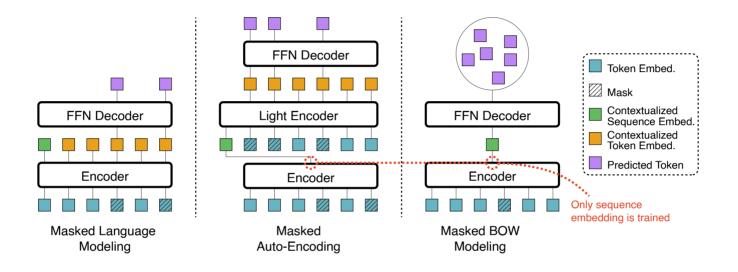




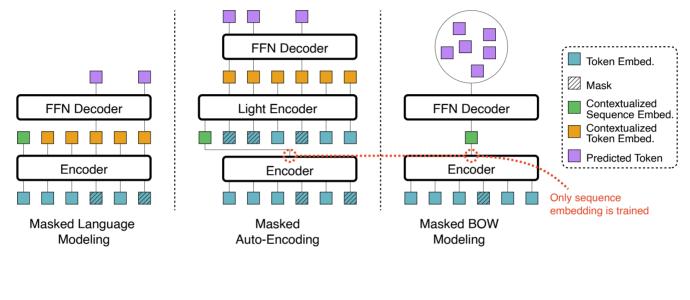




Model		\mathcal{L}		DĽ19	DĽ20	BEIR
	MLM	MAE	BOW			
S-BERT	✓	X	Х			
RetroMAE	\checkmark	\checkmark	X			
CLS-BERT	X	\checkmark	\checkmark			
TITE	X	\checkmark	\checkmark			
TITE	X	\checkmark	X			
TITE	X	X	\checkmark			



Model		L		DĽ19	DĽ20	BEIR
	MLM	MAE	BOW			
S-BERT	1	Х	X	.700	.688	.449
RetroMAE	\checkmark	\checkmark	X	.723	.711	.476
CLS-BERT	X	\checkmark	\checkmark			
TITE	X	\checkmark	\checkmark			
TITE	X	\checkmark	X			
TITE	X	X	\checkmark			



Model		L		DĽ19	DĽ20	BEIR
	MLM	MAE	BOW			
S-BERT	✓	X	Х	.700	.688	.449
RetroMAE	\checkmark	\checkmark	X	.723	.711	.476
CLS-BERT	X	\checkmark	\checkmark	.704	.674	.444
TITE	X	\checkmark	\checkmark	.705	.670	.449
TITE	X	\checkmark	X			
TITE	X	X	\checkmark			

- $\ \ \, \square \ \ \, \mathsf{MLM} + \mathsf{MAE} > \mathsf{MLM}$
- $\square \quad \mathsf{MLM} \approx \mathsf{MAE} + \mathsf{BOW}$

Sequence-Level Pre-Training

X

X

Х

1

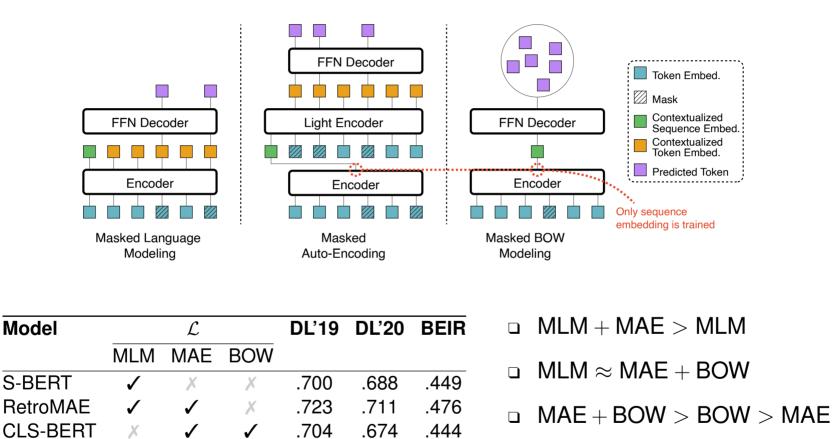
1

Х

1

X

/



.705

.657

.660

.670

.657

.676

.449

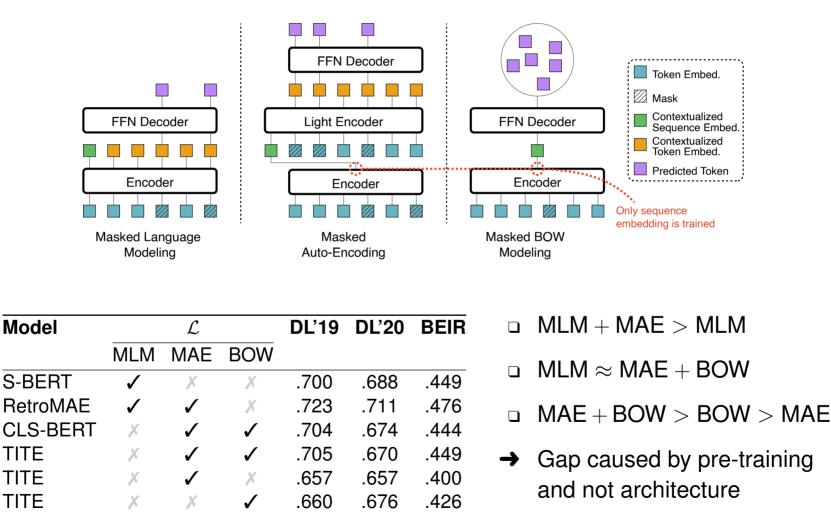
.400

.426

TITE

TITE

TITE



Conclusion

TITE outputs a single sequence-level vector for an input sequence.

TITE outputs a single sequence-level vector for an input sequence.

 $\hfill\square$ Around 2× faster than flash BERT for encoding a sequence

TITE outputs a single sequence-level vector for an input sequence.

- \Box Around 2× faster than flash BERT for encoding a sequence
- □ Same effectiveness as standard bi-encoder models

TITE outputs a single sequence-level vector for an input sequence.

- \Box Around 2× faster than flash BERT for encoding a sequence
- Same effectiveness as standard bi-encoder models
- **BUT:** Further work is necessary to be on par with SOTA models

TITE outputs a single sequence-level vector for an input sequence.

- $\hfill\square$ Around 2× faster than flash BERT for encoding a sequence
- Same effectiveness as standard bi-encoder models
- **BUT:** Further work is necessary to be on par with SOTA models

Paper will be presented at SIGIR 2025. Pre-print available, models coming soon.

Code and paper @ webis-de/tite

TITE outputs a single sequence-level vector for an input sequence.

- $\hfill\square$ Around 2× faster than flash BERT for encoding a sequence
- Same effectiveness as standard bi-encoder models
- **BUT:** Further work is necessary to be on par with SOTA models

Paper will be presented at SIGIR 2025. Pre-print available, models coming soon.

Code and paper @ webis-de/tite

Coding Tutorial 13.06.2024 at 2 PM

Code and paper @ webis-de/set-encoder

TITE outputs a single sequence-level vector for an input sequence.

- $\hfill\square$ Around 2× faster than flash BERT for encoding a sequence
- Same effectiveness as standard bi-encoder models
- **BUT:** Further work is necessary to be on par with SOTA models

Paper will be presented at SIGIR 2025. Pre-print available, models coming soon.

Code and paper @ webis-de/tite

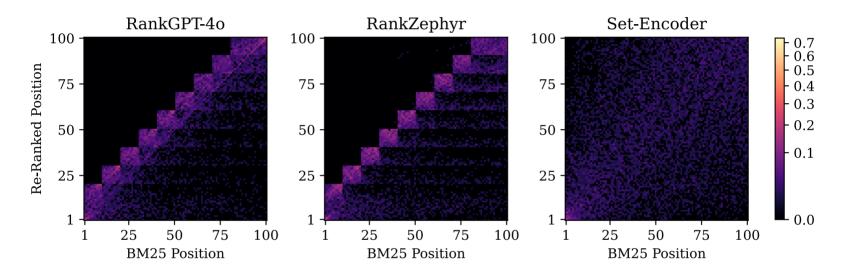
Coding Tutorial 13.06.2024 at 2 PM

Thanks!

Code and paper @ webis-de/set-encoder

Rank Changes

Previous listwise re-rankers are biased by the order of the input documents. What do these biases look like? \rightarrow Plot the original vs re-ranked position.



A substantial number of previous works attempt to mitigate these positional biases. [Zhuang et al., SIGIR'24; Parry et al., arXiv'24]

→ Making the model permutation-invariant is a more principled approach.

Set-Encoder TREC DL

Model	Size	TREC	DL 19	TREC	DL 20
		BM25	CBv2	BM25	CBv2
First Stage	_	0.480 [†]	0.732 [†]	0.494 [†]	0.724 [†]
RankGPT-40	N/A	0.725	0.784	0.719	0.793
RankGPT-40 Full	N/A	<u>0.732</u>	0.781	0.711	0.796
RankZephyr	7B	0.719	0.749	0.720	<u>0.798</u>
LiT5-Distill	220M	0.696	0.753	0.679^{\dagger}	0.744^{\dagger}
monoT5 3B	3B	0.705	0.745	0.715	0.757
RankT5 3B	3B	0.710	0.752	0.711	0.772
monoELECTRA	110M	0.720	0.768	0.711 [†]	0.770
IIIUIIUELEUTRA	330M	0.733	0.765	0.727	0.799
Sat Encodor	110M	0.724	0.788	0.710 [†]	0.777
Set-Encoder	330M	0.727	0.789	0.735	0.790

TREC DL Novelty

	Model	Prompt / L	nD	CG	α -n Σ	CG	
				2019	2020	2019	2020
(1)	First Stage	_		0.732	0.724	0.700 [†]	0.722 [†]
(2)	RankGPT-40	Relevance		0.784 [†]	0.793 [†]	0.750	0.759
(3)	nalinge 1-40	Novelty		0.778^{\dagger}	0.806 [†]	0.741	<u>0.773</u>
(4)	RankGPT-4o Full	Relevance		0.781 [†]	0.796 [†]	0.738	0.763
(5)	Marikar 1-40 I uli	Novelty		<u>0.785</u> †	<u>0.803</u> †	0.750	0.771
(6)	RankZephyr	Relevance		0.749	0.798 [†]	0.699 [†]	0.765
(7)	Πατικζεριτγι	Novelty		0.753	0.800†	0.700†	0.760
(8)	Model	1st \mathcal{L}	2nd \mathcal{L}				
(9)	monoELECTRA	<u></u>	$\mathcal{L}_{RankNet}$	0.768†	0.770†	0.718 [†]	0.745 [†]
(10)	MONULLOTIA	$\mathcal{L}_{InfoNCE}$	$\mathcal{L}_{NA ext{-}RankNet}$	0.704	0.675	<u>0.785</u>	0.753
(11)		Current	$\mathcal{L}_{RankNet}$	0.780 [†]	0.757^{\dagger}	0.733^{\dagger}	0.747^{\dagger}
(12)		$\mathcal{L}_{InfoNCE}$	\mathcal{L}_{NA} -RankNet	0.714	0.651	0.779	0.743 [†]
(13)	Set-Encoder	<u></u>	$\mathcal{L}_{RankNet}$	0.788 [†]	0.777 [†]	0.740^{\dagger}	0.752 [†]
(14)		\mathcal{L}_{DA} -InfoNCE	$\mathcal{L}_{NA\text{-}RankNet}$	0.710	0.690	0.821	0.803
(15)	Set-Enc. [INT]	$\mathcal{L}_{\text{DA-InfoNCE}}$	$\mathcal{L}_{NA-RankNet}$	0.707	0.670	0.773	0.748 [†]

Out-of-Domain Re-Ranking

Model	א <i>ך</i> Size	Arg tique	Cluew 's.me	Сі _{че W}	, COR	Cran D-19	Disk Dfield	s4 ₊₅	GOV (MED POV2	NFC0 LINE	Vas Drpus	w _{anj}	Wapo ^{G.} I	M _{ean}
First Stage	_	.516†	.405	.177†	.364 †	.586†	.012	.424†	.259†	.467†	.385	.281†	.447†	.364†	.286
RankZephyr	7B	.534†	.364†	.213	.303	.767 [†]	.009	.542	.349	.560	.460 [†]	.314	.512	.508	.320
LiT5-Distill	220M	.576†	.395	.214	.275†	.686	<u>.011</u>	.495†	.304†	.534†	.354†	.293†	.429 [†]	.470	.302
monoT5 3B	3B	.590	<u>.415</u>	.188†	.323	.649†	<u>.011</u>	.526	.345	.529†	.395	<u>.319</u>	.474†	.469	.313
RankT5 3B	3B	.598	.421	.227	.336	.713	.010	.538	.353	.528†	.406	.323	.459†	.468†	.322
m.ELECTRA	110M	.593	.375†	.209	.295	.692	.010	.507†	.305†	.541†	.399	.306	.522	.458†	.309
III.ELEGTRA	330M	.575†	.369†	.221	.313	<u>.716</u>	.008	.546	.344	.572	.419	.316	.526	.504	.318
Set-Encoder	110M	.594	.375†	.216	.299	.683	.010	.513†	.306†	.543 [†]	.396	.306	.523	.461†	.311
Set-Encoder	330M	.606	.409	.226	.310	.702	.009	.534	.334	.573	.405	.313	.530	.508	.321

Efficiency

Model	Size	Time	Memory
RankGPT-40	N/A	18.773	N/A
RankGPT-40 Full	N/A	7.362	N/A
RankZephyr	7B	24.047	15.48
LiT5-Distill	220M	2.054	2.69
monoT5 _{3B}	3B	0.998	29.36
RankT5 _{3B}	3B	0.942	29.04
monoELECTRA	110M	0.139	1.18
IIIUIIUELEUTAA	330M	0.215	2.69
Set-Encoder	110M	0.147	1.25
	330M	0.219	2.60

TITE Efficiency

Mod	el			Kernel	Queries	Documents
BER	Т			Eager	24.0 (0.5×)	2.0 (0.2×)
Disti	IBE	RT		Eager	47.1 (1.0×)	3.7 (0.4×)
Funr	nel	Trar	nsformer	Eager	14.2 (0.3×)	1.3 (0.1×)
TITE	E (P	ool	Param.: 1)	Eager	69.8 (1.5×)	6.7 (0.8×)
BER	Т			SDPA	28.9 (0.6×)	3.2 (0.4×)
Disti	IBE	RT		SDPA	57.9 (1.2×)	6.4 (0.7×)
TITE	E (P	ool	Param.: 1)	SDPA	81.2 (1.7×)	13.4 (1.5×)
BER	Τ			Flash	48.0	8.7
Mod	ern	BEF	RT	Flash	41.1 (0.9×)	8.3 (1.0×)
	k,s	Arr.	Loc. Dim.			
1	2	L	Intra 768	Flash	89.0 (1.9×)	20.8 (2.4×)
2	2	S	Intra 768	Flash	96.0 (2.0×)	28.5 (3.3×)
ш ³	3	L	Intra 768	Flash	68.1 (1.4×)	14.5 (1.7×)
E 4	3	S	Intra 768	Flash	94.6 (2.0×)	30.8 (3.5×)
5	2	L	Pre 768	Flash	89.6 (1.9×)	21.2 (2.4×)
6	2	L	Post 768	Flash	89.0 (1.9×)	20.3 (2.3×)
$\overline{\mathcal{O}}$	2	L	Intra 1536	Flash	70.1 (1.5×)	16.3 (1.9×)

TITE Effectiveness

Model	TREC		BEIR															
		Clin Aro	CÇ ^{Date-FE} UAna	ADUPS VER	DR	n Fr	`.	Hoto	NFC		C	SCIN	74	REC.C		Arith. N ^{UChé}	eom	M _{ean}
	2019	2020	UAna C	VER	plack	o _{edia} FE	VER	Hotpo FiQA	NECO IQA	rpus	NQ	SCID Juora	OCS ^{CC}	iFact	JVID	uché	lean !	Nean
BM25	.506†	.480 [†]	.397†	.165†	.302	.318†	.651†	.236†	.633†	.322	.305†	.789†	.149	.679†	.595†	.442 [†]	.427	.379
S-BERT (Repro.)	.700	.688	.336	.224	.319	.369	.727	.317	.574	.303	.510	.844	.146	.603	.756	.256	.449	.399
S-BERT	.705	.726	.384†	.221	.337	.385	.762†	.323	.585†	.315	.522†	.844	.146	.606	.744	.237	.458	.407
S-DistilBERT	.705	.699	.355†	.233	.322	.375	.774†	.286†	.571	.298	.497†	.833†	.140	.596	.666†	.224	.441	.391
S-ModernBERT	_	_	.357	.236	.331	.238	.599	.288	.461	.237	.395	.859	.125	.570	.721	.208	.402	.352
RetroMAE (Repro.)	.723	.711	.375†	.242 [†]	.340	.406†	.737†	.340†	.624†	.336†	.539 [†]	.844	.163†	.663†	.780	.273	.476	.428
RetroMAE	.712	.730	.367†	.240†	.342	.428†	.777†	.343 [†]	.668†	.325†	.573 [†]	.853 [†]	.160†	.638	.759	.280	.482	.432
ColBERTv2	.732	.724	.453†	.176 [†]	.359	.441 †	.774†	.346†	$.665^{\dagger}$.330†	.547†	.851 [†]	.150	.691†	.732	.257	.484	.427
SPLADE++	.731	.720	.520 †	.230	.334	.437†	.788 †	.347 †	.687 †	.347 †	.538†	.834†	.159†	.704 †	.727	.247	.493	.440
TITE (Base)	.705	.670	.391†	.204†	.312	.376	.699†	.302	.604†	.334†	.484†	.818 [†]	.156	.647†	.691	.271	.449	.403
TITE (Upscale)	.724	.686	.373 [†]	.209†	.323	.374	.704†	.298	.616†	.328†	.490 [†]	.827†	.155	.632	.715	.275	.451	.404

Model Parameters						TRE	C DL		BEIR		
	$_{k,s}$	Arr.	Loc.	Dim.	-	2019	2020	_	Arith.	Geom.	
1	2	L	Intra	768		.705	.670		.449	.403	
2	2	S	Intra	768		.675	.663		.443	.397	
ш ³	3	L	Intra	768		.683	.672		.445	.400	
E@		S	Intra	768		.673	.669		.443	.399	
Г	2	L	Pre	768		.686	.682		.445	.400	
6	2	L	Post	768		.670	.683		.446	.399	
$\overline{\mathcal{O}}$	2	L	Intra	1536		.724	.686		.451	.404	